BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36203144)

  • 1. EnsembleSplice: ensemble deep learning model for splice site prediction.
    Akpokiro V; Martin T; Oluwadare O
    BMC Bioinformatics; 2022 Oct; 23(1):413. PubMed ID: 36203144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks.
    Liu X; Zhang H; Zeng Y; Zhu X; Zhu L; Fu J
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated framework for evaluation of deep learning models for splice site predictions.
    Zabardast A; Tamer EG; Son YA; Yılmaz A
    Sci Rep; 2023 Jun; 13(1):10221. PubMed ID: 37353532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities.
    Trabelsi A; Chaabane M; Ben-Hur A
    Bioinformatics; 2019 Jul; 35(14):i269-i277. PubMed ID: 31510640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Splicer: A CNN Model for Splice Site Prediction in Genetic Sequences.
    Fernandez-Castillo E; Barbosa-Santillán LI; Falcon-Morales L; Sánchez-Escobar JJ
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De Novo Training, and Multiview Incorporation.
    Kitamura G; Chung CY; Moore BE
    J Digit Imaging; 2019 Aug; 32(4):672-677. PubMed ID: 31001713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning architectures for multi-label classification of intelligent health risk prediction.
    Maxwell A; Li R; Yang B; Weng H; Ou A; Hong H; Zhou Z; Gong P; Zhang C
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):523. PubMed ID: 29297288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning.
    Wu H; Zhou B; Zhou H; Zhang P; Wang M
    Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ReGeNNe: genetic pathway-based deep neural network using canonical correlation regularizer for disease prediction.
    Sharma D; Xu W
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37963055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effective correlation-based data modeling framework for automatic diabetes prediction using machine and deep learning techniques.
    Patro KK; Allam JP; Sanapala U; Marpu CK; Samee NA; Alabdulhafith M; Plawiak P
    BMC Bioinformatics; 2023 Oct; 24(1):372. PubMed ID: 37784049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the impact of single nucleotide variants on splicing via sequence-based deep neural networks and genomic features.
    Naito T
    Hum Mutat; 2019 Sep; 40(9):1261-1269. PubMed ID: 31090248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence for skin permeability prediction: deep learning.
    Ita K; Roshanaei S
    J Drug Target; 2024 Dec; 32(3):334-346. PubMed ID: 38258521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance improvement for a 2D convolutional neural network by using SSC encoding on protein-protein interaction tasks.
    Wang Y; Li Z; Zhang Y; Ma Y; Huang Q; Chen X; Dai Z; Zou X
    BMC Bioinformatics; 2021 Apr; 22(1):184. PubMed ID: 33845759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting Transfer Learning Method for Tuberculosis Diagnosis.
    Hansun S; Argha A; Alinejad-Rokny H; Liaw ST; Celler BG; Marks GB
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the reliability of point mutation as data augmentation for deep learning with genomic data.
    Lee H; Ozbulak U; Park H; Depuydt S; De Neve W; Vankerschaver J
    BMC Bioinformatics; 2024 Apr; 25(1):170. PubMed ID: 38689247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved prediction of DNA and RNA binding proteins with deep learning models.
    Wu S; Guo JT
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.