BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36203247)

  • 1. Diseased thyroid tissue classification in OCT images using deep learning: Towards surgical decision support.
    Tampu IE; Eklund A; Johansson K; Gimm O; Haj-Hosseini N
    J Biophotonics; 2023 Feb; 16(2):e202200227. PubMed ID: 36203247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraoperative optical coherence tomography imaging to identify parathyroid glands.
    Sommerey S; Al Arabi N; Ladurner R; Chiapponi C; Stepp H; Hallfeldt KK; Gallwas JK
    Surg Endosc; 2015 Sep; 29(9):2698-704. PubMed ID: 25475518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of neck tissues in OCT images by using convolutional neural network.
    Pan H; Yang Z; Hou F; Zhao J; Yu Y; Liang Y
    Lasers Med Sci; 2022 Dec; 38(1):21. PubMed ID: 36564643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative use of optical coherence tomography to differentiate normal and diseased thyroid and parathyroid tissues from lymph node and fat.
    Rubinstein M; Hu AC; Chung PS; Kim JH; Osann KE; Schalch P; Armstrong WB; Wong BJF
    Lasers Med Sci; 2021 Mar; 36(2):269-278. PubMed ID: 32337680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflation of test accuracy due to data leakage in deep learning-based classification of OCT images.
    Tampu IE; Eklund A; Haj-Hosseini N
    Sci Data; 2022 Sep; 9(1):580. PubMed ID: 36138025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative optical coherence tomography of the human thyroid: Feasibility for surgical assessment.
    Erickson-Bhatt SJ; Mesa KJ; Marjanovic M; Chaney EJ; Ahmad A; Huang PC; Liu ZG; Cunningham K; Boppart SA
    Transl Res; 2018 May; 195():13-24. PubMed ID: 29287166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid head and neck tissue identification in thyroid and parathyroid surgery using optical coherence tomography.
    Yang N; Boudoux C; De Montigny E; Maniakas A; Gologan O; Madore WJ; Khullar S; Guertin L; Christopoulos A; Bissada E; Ayad T
    Head Neck; 2019 Dec; 41(12):4171-4180. PubMed ID: 31571306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MBT: Model-Based Transformer for retinal optical coherence tomography image and video multi-classification.
    Ait Hammou B; Antaki F; Boucher MC; Duval R
    Int J Med Inform; 2023 Oct; 178():105178. PubMed ID: 37657204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic identification of parathyroid in optical coherence tomography images.
    Hou F; Yu Y; Liang Y
    Lasers Surg Med; 2017 Mar; 49(3):305-311. PubMed ID: 28129441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Deep Learning Model for Classification of Retinal Optical Coherence Tomography Images.
    Hassan E; Elmougy S; Ibraheem MR; Hossain MS; AlMutib K; Ghoneim A; AlQahtani SA; Talaat FM
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Optical coherence tomography for differentiation of parathyroid gland tissue].
    Ladurner R; Hallfeldt K; Al Arabi N; Gallwas J; Mortensen U; Sommerey S
    Chirurg; 2016 May; 87(5):416-22. PubMed ID: 26661948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new computer-aided diagnosis tool based on deep learning methods for automatic detection of retinal disorders from OCT images.
    Alizadeh Eghtedar R; Vard A; Malekahmadi M; Peyman A
    Int Ophthalmol; 2024 Feb; 44(1):110. PubMed ID: 38396074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography as a method to identify parathyroid glands.
    Ladurner R; Hallfeldt KK; Al Arabi N; Stepp H; Mueller S; Gallwas JK
    Lasers Surg Med; 2013 Dec; 45(10):654-9. PubMed ID: 24249200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OCT-based deep-learning models for the identification of retinal key signs.
    Leandro I; Lorenzo B; Aleksandar M; Dario M; Rosa G; Agostino A; Daniele T
    Sci Rep; 2023 Sep; 13(1):14628. PubMed ID: 37670066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.