These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36203785)

  • 1. Biodegradable Polyphosphazenes for Regenerative Engineering.
    Chen F; Teniola OR; Laurencin CT
    J Mater Res; 2022 Apr; 37(8):1417-1428. PubMed ID: 36203785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.
    Ogueri KS; Escobar Ivirico JL; Nair LS; Allcock HR; Laurencin CT
    Regen Eng Transl Med; 2017 Mar; 3(1):15-31. PubMed ID: 28596987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).
    Ogueri KS; Allcock HR; Laurencin CT
    Prog Polym Sci; 2019 Nov; 98():. PubMed ID: 31551636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics.
    Baillargeon AL; Mequanint K
    Biomed Res Int; 2014; 2014():761373. PubMed ID: 24883323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery.
    Ogueri KS; Ogueri KS; Allcock HR; Laurencin CT
    J Vac Sci Technol B Nanotechnol Microelectron; 2020 May; 38(3):030801. PubMed ID: 32309041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-Soluble, Biocompatible Polyphosphazenes with Controllable and pH-Promoted Degradation Behavior.
    Wilfert S; Iturmendi A; Schoefberger W; Kryeziu K; Heffeter P; Berger W; Brüggemann O; Teasdale I
    J Polym Sci A Polym Chem; 2014 Jan; 52(2):287-294. PubMed ID: 24729657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials.
    Ogueri KS; Escobar Ivirico JL; Li Z; Blumenfield RH; Allcock HR; Laurencin CT
    ACS Appl Polym Mater; 2019 Jun; 1(6):1568-1578. PubMed ID: 32699835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polyphosphazenes for drug delivery applications.
    Lakshmi S; Katti DS; Laurencin CT
    Adv Drug Deliv Rev; 2003 Apr; 55(4):467-82. PubMed ID: 12706046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Evaluation of the Regenerative Capability of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic-
    Ogueri KS; Ogueri KS; McClinton A; Kan HM; Ude CC; Barajaa MA; Allcock HR; Laurencin CT
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1564-1572. PubMed ID: 33792283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery.
    Teasdale I; Brüggemann O
    Polymers (Basel); 2013 Mar; 5(1):161-187. PubMed ID: 24729871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering.
    Nukavarapu SP; Kumbar SG; Brown JL; Krogman NR; Weikel AL; Hindenlang MD; Nair LS; Allcock HR; Laurencin CT
    Biomacromolecules; 2008 Jul; 9(7):1818-25. PubMed ID: 18517248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles.
    Martinez AP; Qamar B; Fuerst TR; Muro S; Andrianov AK
    Biomacromolecules; 2017 Jun; 18(6):2000-2011. PubMed ID: 28525259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects.
    Sethuraman S; Nair LS; El-Amin S; Nguyen MT; Singh A; Krogman N; Greish YE; Allcock HR; Brown PW; Laurencin CT
    Acta Biomater; 2010 Jun; 6(6):1931-7. PubMed ID: 20004751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical applications of polyphosphazenes.
    Ogueri KS; Ogueri KS; Ude CC; Allcock HR; Laurencin CT
    Med Devices Sens; 2020 Dec; 3(6):. PubMed ID: 33889811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable synthetic polymers for tissue engineering.
    Gunatillake PA; Adhikari R
    Eur Cell Mater; 2003 May; 5():1-16; discussion 16. PubMed ID: 14562275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.
    Rodríguez-Vázquez M; Vega-Ruiz B; Ramos-Zúñiga R; Saldaña-Koppel DA; Quiñones-Olvera LF
    Biomed Res Int; 2015; 2015():821279. PubMed ID: 26504833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable elastomers for biomedical applications and regenerative medicine.
    Bat E; Zhang Z; Feijen J; Grijpma DW; Poot AA
    Regen Med; 2014 May; 9(3):385-98. PubMed ID: 24935047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic biodegradable functional polymers for tissue engineering: a brief review.
    BaoLin G; Ma PX
    Sci China Chem; 2014 Apr; 57(4):490-500. PubMed ID: 25729390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent research progress on polyphosphazene-based drug delivery systems.
    Ni Z; Yu H; Wang L; Shen D; Elshaarani T; Fahad S; Khan A; Haq F; Teng L
    J Mater Chem B; 2020 Feb; 8(8):1555-1575. PubMed ID: 32025683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.