These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 36203785)

  • 21. Polyphosphazene-Based Biomaterials for Biomedical Applications.
    Jin GW; Rejinold NS; Choy JH
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable bioelectronics for biomedical applications.
    Lee S; M Silva S; Caballero Aguilar LM; Eom T; Moulton SE; Shim BS
    J Mater Chem B; 2022 Nov; 10(42):8575-8595. PubMed ID: 36214325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable polymers. II. Degradation characteristics of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(9):601-11. PubMed ID: 1391407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Mechanism Study on Effect of Biodegradable Amino Acid Ester-Substituted Polyphosphazenes in Stimulating Osteogenic Differentiation.
    Huang Z; Yang L; Hu X; Huang Y; Cai Q; Ao Y; Yang X
    Macromol Biosci; 2019 Jun; 19(6):e1800464. PubMed ID: 31050390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The potential of polyphosphazenes for delivery of vaccine antigens and immunotherapeutic agents.
    Eng NF; Garlapati S; Gerdts V; Potter A; Babiuk LA; Mutwiri GK
    Curr Drug Deliv; 2010 Jan; 7(1):13-20. PubMed ID: 19863483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradable glycine-based photo-polymerizable polyphosphazenes for use as scaffolds for tissue regeneration.
    Rothemund S; Aigner TB; Iturmendi A; Rigau M; Husár B; Hildner F; Oberbauer E; Prambauer M; Olawale G; Forstner R; Liska R; Schröder KR; Brüggemann O; Teasdale I
    Macromol Biosci; 2015 Mar; 15(3):351-63. PubMed ID: 25355036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends.
    Mano JF; Silva GA; Azevedo HS; Malafaya PB; Sousa RA; Silva SS; Boesel LF; Oliveira JM; Santos TC; Marques AP; Neves NM; Reis RL
    J R Soc Interface; 2007 Dec; 4(17):999-1030. PubMed ID: 17412675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine.
    Wu DT; Munguia-Lopez JG; Cho YW; Ma X; Song V; Zhu Z; Tran SD
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.
    Pina S; Oliveira JM; Reis RL
    Adv Mater; 2015 Feb; 27(7):1143-69. PubMed ID: 25580589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine.
    Amiryaghoubi N; Fathi M; Pesyan NN; Samiei M; Barar J; Omidi Y
    Med Res Rev; 2020 Sep; 40(5):1833-1870. PubMed ID: 32301138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide release from a biodegradable cysteine-based polyphosphazene.
    Lutzke A; Neufeld BH; Neufeld MJ; Reynolds MM
    J Mater Chem B; 2016 Mar; 4(11):1987-1998. PubMed ID: 32263076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.
    Deng M; Nair LS; Nukavarapu SP; Jiang T; Kanner WA; Li X; Kumbar SG; Weikel AL; Krogman NR; Allcock HR; Laurencin CT
    Biomaterials; 2010 Jun; 31(18):4898-908. PubMed ID: 20334909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends.
    Rahmati M; Pennisi CP; Budd E; Mobasheri A; Mozafari M
    Adv Exp Med Biol; 2018; 1119():1-19. PubMed ID: 30406362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coumarin-Caged Polyphosphazenes with a Visible-Light Driven On-Demand Degradation.
    Iturmendi A; Theis S; Maderegger D; Monkowius U; Teasdale I
    Macromol Rapid Commun; 2018 Sep; 39(18):e1800377. PubMed ID: 30048024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradable polyurethanes: synthesis and applications in regenerative medicine.
    Guelcher SA
    Tissue Eng Part B Rev; 2008 Mar; 14(1):3-17. PubMed ID: 18454631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Biodegradable Polymers and Biomaterials for Medical Applications-A Review.
    Oleksy M; Dynarowicz K; Aebisher D
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications.
    Sharma R; Kumar S; Bhawna ; Gupta A; Dheer N; Jain P; Singh P; Kumar V
    Tissue Eng Regen Med; 2022 Oct; 19(5):927-960. PubMed ID: 35661124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.