These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36204069)

  • 1. Development of a dual-arm rapid grape-harvesting robot for horizontal trellis cultivation.
    Jiang Y; Liu J; Wang J; Li W; Peng Y; Shan H
    Front Plant Sci; 2022; 13():881904. PubMed ID: 36204069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and experimentation of multi-fruit envelope-cutting kiwifruit picking robot.
    Fu M; Guo S; Chen A; Cheng R; Cui X
    Front Plant Sci; 2024; 15():1338050. PubMed ID: 38375081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fruit Detection and Pose Estimation for Grape Cluster-Harvesting Robot Using Binocular Imagery Based on Deep Neural Networks.
    Yin W; Wen H; Ning Z; Ye J; Dong Z; Luo L
    Front Robot AI; 2021; 8():626989. PubMed ID: 34239899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Grape Cluster Detection in a Vineyard by Combining the AdaBoost Framework and Multiple Color Components.
    Luo L; Tang Y; Zou X; Wang C; Zhang P; Feng W
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent Stop-Move Motion Planning for Dual-Arm Tomato Harvesting Robot in Greenhouse Based on Deep Reinforcement Learning.
    Li Y; Feng Q; Zhang Y; Peng C; Zhao C
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unstructured road extraction and roadside fruit recognition in grape orchards based on a synchronous detection algorithm.
    Zhou X; Zou X; Tang W; Yan Z; Meng H; Luo X
    Front Plant Sci; 2023; 14():1103276. PubMed ID: 37332733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Fruit Recognition and Grasping Estimation for Robotic Apple Harvesting.
    Kang H; Zhou H; Wang X; Chen C
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive variable impedance control of dual-arm robots for slabstone installation.
    Hu H; Cao J
    ISA Trans; 2022 Sep; 128(Pt A):397-408. PubMed ID: 34772507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green Grape Detection and Picking-Point Calculation in a Night-Time Natural Environment Using a Charge-Coupled Device (CCD) Vision Sensor with Artificial Illumination.
    Xiong J; Liu Z; Lin R; Bu R; He Z; Yang Z; Liang C
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.
    Chiang MH; Lin HT
    Sensors (Basel); 2011; 11(12):11476-94. PubMed ID: 22247676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
    Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z
    Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications.
    Barbole DK; Jadhav PM
    Data Brief; 2023 Jun; 48():109100. PubMed ID: 37089206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved YOLO v4 used for grape detection in unstructured environment.
    Guo C; Zheng S; Cheng G; Zhang Y; Ding J
    Front Plant Sci; 2023; 14():1209910. PubMed ID: 37521937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on motion planning for an indoor spray arm based on an improved potential field method.
    Zhao D; Zhang B; Zhao Y; Sun Q; Li C; Wang C
    PLoS One; 2020; 15(1):e0226912. PubMed ID: 31923217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinating Obstacle Avoidance of a Redundant Dual-Arm Nursing-Care Robot.
    Yang Z; Lu H; Wang P; Guo S
    Bioengineering (Basel); 2024 May; 11(6):. PubMed ID: 38927786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Operational Elements of the Robotic Subsystem for the e.deorbit Debris Removal Mission.
    Jaekel S; Lampariello R; Rackl W; De Stefano M; Oumer N; Giordano AM; Porges O; Pietras M; Brunner B; Ratti J; Muehlbauer Q; Thiel M; Estable S; Biesbroek R; Albu-Schaeffer A
    Front Robot AI; 2018; 5():100. PubMed ID: 33500979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive discretized RNN algorithm for posture collaboration motion control of constrained dual-arm robots.
    Zhang Y; Han Y; Qiu B
    Front Neurorobot; 2024; 18():1406604. PubMed ID: 38840656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target location method of intelligent deicing robot based on nonlinear auto disturbance rejection neural network.
    Kong L; Yi C
    Heliyon; 2024 May; 10(9):e29971. PubMed ID: 38707438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research progress and development trend of surgical robot and surgical instrument arm.
    Zhang W; Li H; Cui L; Li H; Zhang X; Fang S; Zhang Q
    Int J Med Robot; 2021 Oct; 17(5):e2309. PubMed ID: 34270175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent robotics harvesting system process for fruits grasping prediction.
    Alaaudeen KM; Selvarajan S; Manoharan H; Jhaveri RH
    Sci Rep; 2024 Feb; 14(1):2820. PubMed ID: 38307901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.