These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36204071)

  • 21. Potential distribution prediction of
    Zhang X; Zhao J; Wang M; Li Z; Lin S; Chen H
    Ecol Evol; 2022 Dec; 12(12):e9505. PubMed ID: 36518625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting current and future potential distributions of the greater bandicoot rat (Bandicota indica) under climate change conditions.
    Lin S; Yao D; Jiang H; Qin J; Feng Z
    Pest Manag Sci; 2024 Feb; 80(2):734-743. PubMed ID: 37779103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Niche modeling for the genus
    Rej JE; Joyner TA
    PeerJ; 2018; 6():e6128. PubMed ID: 30588407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Projecting Suitability and Climate Vulnerability of Bhutanitis thaidina (Blanchard) (Lepidoptera: Papilionidae) with Conservation Implications.
    Hu SJ; Xing DH; Gong ZX; Hu JM
    Sci Rep; 2019 Oct; 9(1):15384. PubMed ID: 31659227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of Breeding Population and Predicting Future Habitat under Climate Change of Black-Necked Crane (
    Li M; Zhou H; Bai J; Zhang T; Liu Y; Ran J
    Animals (Basel); 2022 Sep; 12(19):. PubMed ID: 36230335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Climate change may drive the distribution of tribe Zyginelline pests in China and the Indo-China Peninsula to shift towards higher latitude river-mountain systems.
    Ran WW; Luo GM; Zhao YQ; Li C; Dietrich CH; Song YH
    Pest Manag Sci; 2024 Feb; 80(2):613-626. PubMed ID: 37740940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance.
    Shen Y; Tu Z; Zhang Y; Zhong W; Xia H; Hao Z; Zhang C; Li H
    J Environ Manage; 2022 Nov; 322():116024. PubMed ID: 36055092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China].
    Li Y; Zhang XW; Fang YM
    Ying Yong Sheng Tai Xue Bao; 2014 Dec; 25(12):3381-9. PubMed ID: 25876385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current and future distribution of the deciduous shrub
    Yan X; Wang S; Duan Y; Han J; Huang D; Zhou J
    Ecol Evol; 2021 Nov; 11(22):16099-16112. PubMed ID: 34824814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model.
    Ma B; Sun J
    BMC Ecol; 2018 Feb; 18(1):10. PubMed ID: 29466976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling.
    Li Y; Shao W; Jiang J
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21751-21768. PubMed ID: 34773237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conservation planning for the endemic and endangered medicinal plants under the climate change and human disturbance: a case study of
    Zou H; Chen B; Zhang B; Zhou X; Zhang X; Zhang X; Wang J
    Front Plant Sci; 2023; 14():1184556. PubMed ID: 37564387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the Present and Future Habitat Suitability of
    Lepe-Lopez M; Escobar-Dodero J; Zimin-Veselkoff N; Azat C; Mardones FO
    Front Vet Sci; 2020; 7():615039. PubMed ID: 33634179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation the potential distribution of
    Ouyang X; Lin H; Bai S; Chen J; Chen A
    Front Plant Sci; 2022; 13():1054710. PubMed ID: 36452097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Potential geographical distribution of Pyrus calleryana under different climate change scena-rios based on the MaxEnt model].
    Liu C; Huo HL; Tian LM; Dong XG; Qi D; Zhang Y; Xu JY; Cao YF
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3696-3704. PubMed ID: 30460817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the current and future potential spatial distribution of endangered Rucervus eldii eldii (Sangai) using MaxEnt model.
    Anand V; Oinam B; Singh IH
    Environ Monit Assess; 2021 Feb; 193(3):147. PubMed ID: 33638015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Species distribution models for predicting the habitat suitability of Chinese fire-bellied newt
    Guo K; Yuan S; Wang H; Zhong J; Wu Y; Chen W; Hu C; Chang Q
    Ecol Evol; 2021 Aug; 11(15):10147-10154. PubMed ID: 34367565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Prediction of the potential distribution of Tibetan medicinal Lycium ruthenicum in context of climate change].
    Lin L; Jin L; Wang ZH; Cui ZJ; Ma Y
    Zhongguo Zhong Yao Za Zhi; 2017 Jul; 42(14):2659-2669. PubMed ID: 29098819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shifts in potential geographical distribution of
    Zhang K; Liu H; Pan H; Shi W; Zhao Y; Li S; Liu J; Tao J
    Ecol Evol; 2020 Jun; 10(11):4828-4837. PubMed ID: 32551064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.