These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3620517)

  • 1. Macrophage recognition of the erythrocytes modified by oxidizing agents.
    Beppu M; Ochiai H; Kikugawa K
    Biochim Biophys Acta; 1987 Sep; 930(2):244-53. PubMed ID: 3620517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ; Sullivan SG; Stern A
    Biochem J; 1983 Jun; 212(3):759-72. PubMed ID: 6882393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. t-Butyl hydroperoxide-induced changes in the physicochemical properties of human erythrocytes.
    Corry WD; Meiselman HJ; Hochstein P
    Biochim Biophys Acta; 1980 Apr; 597(2):224-34. PubMed ID: 7370251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage recognition of saccharide chains on the erythrocytes damaged by iron-catalyzed oxidation.
    Beppu M; Takahashi T; Kashiwada M; Masukawa S; Kikugawa K
    Arch Biochem Biophys; 1994 Jul; 312(1):189-97. PubMed ID: 8031127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical-mediated damage to parasites and erythrocytes in Plasmodium vinckei infected mice after injection of t-butyl hydroperoxide.
    Clark IA; Hunt NH; Cowden WB; Maxwell LE; Mackie EJ
    Clin Exp Immunol; 1984 Jun; 56(3):524-30. PubMed ID: 6744660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage recognition of periodate-treated erythrocytes: involvement of disulfide formation of the erythrocyte membrane proteins.
    Beppu M; Ochiai H; Kikugawa K
    Biochim Biophys Acta; 1989 Feb; 979(1):35-45. PubMed ID: 2537107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical involvement in the oxidative phenomena induced by tert-butyl hydroperoxide in erythrocytes.
    Thornalley PJ; Trotta RJ; Stern A
    Biochim Biophys Acta; 1983 Aug; 759(1-2):16-22. PubMed ID: 6309246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of poly-N-acetyllactosaminyl saccharide chains on iron-oxidized erythrocytes by human monocytic leukemia cell line THP-1 differentiated into macrophages.
    Beppu M; Eda S; Fujimaki M; Hishiyama E; Kikugawa K
    Biol Pharm Bull; 1996 Feb; 19(2):188-94. PubMed ID: 8850303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumour promoter tert-butyl-hydroperoxide induces peroxynitrite formation in human erythrocytes.
    Deliconstantinos G; Villiotou V; Stavrides JC
    Anticancer Res; 1996; 16(5A):2969-79. PubMed ID: 8917415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prehemolytic effects of hydrogen peroxide and t-butylhydroperoxide on selected red cell properties.
    Chen MJ; Sorette MP; Chiu DT; Clark MR
    Biochim Biophys Acta; 1991 Jul; 1066(2):193-200. PubMed ID: 1906750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lectin-like receptor on murine macrophage is involved in the recognition and phagocytosis of human red cells oxidized by phenylhydrazine.
    Horn S; Gopas J; Bashan N
    Biochem Pharmacol; 1990 Feb; 39(4):775-80. PubMed ID: 2106324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of red blood cell glutathione peroxidase and morphological transformation of erythrocytes under the action of tert-butyl hydroperoxide.
    Zavodnik LB; Zavodnik IB; Niekurzak A; Szosland K; Bryszewska M
    Biochem Mol Biol Int; 1998 Mar; 44(3):577-88. PubMed ID: 9556219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phagocytosis of phenylhydrazine oxidized and G-6-PD deficient red blood cells: the role of sugars and cell-bound immunoglobulins.
    Horn S; Bashan N; Moses S; Gopas J
    Adv Exp Med Biol; 1991; 307():285-300. PubMed ID: 1805591
    [No Abstract]   [Full Text] [Related]  

  • 14. t-butyl hydroperoxide-induced perturbations of human erythrocytes as a model for oxidant stress.
    Rice-Evans C; Baysal E; Pashby DP; Hochstein P
    Biochim Biophys Acta; 1985 May; 815(3):426-32. PubMed ID: 3995035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phagocytosis of phenylhydrazine oxidized and G-6-PD-deficient red blood cells: the role of cell-bound immunoglobulins.
    Horn S; Bashan N; Gopas J
    Blood; 1991 Oct; 78(7):1818-25. PubMed ID: 1912568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. t-Butyl hydroperoxide alters fatty acid incorporation into erythrocyte membrane phospholipid.
    Dise CA; Goodman DB
    Biochim Biophys Acta; 1986 Jul; 859(1):69-78. PubMed ID: 3718986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations of adenine nucleotide levels in normal and pathologic human erythrocytes exposed to oxidative stress.
    Bozzi A; Martini F; Leonardi F; Strom R
    Biochem Mol Biol Int; 1994 Jan; 32(1):95-103. PubMed ID: 8012294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative processes in red blood cells from normal and diabetic individuals.
    Bryszewska M; Zavodnik IB; Niekurzak A; Szosland K
    Biochem Mol Biol Int; 1995 Oct; 37(2):345-54. PubMed ID: 8673018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of anti-band 3 autoantibody to oxidatively damaged erythrocytes. Formation of senescent antigen on erythrocyte surface by an oxidative mechanism.
    Beppu M; Mizukami A; Nagoya M; Kikugawa K
    J Biol Chem; 1990 Feb; 265(6):3226-33. PubMed ID: 2303447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell phagocytosis following hexokinase inactivation.
    Chiarantini L; Antonelli A; Rossi L; Fraternale A; Magnani M
    Cell Biochem Funct; 1994 Sep; 12(3):217-20. PubMed ID: 7955131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.