BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36205177)

  • 1. Efficient formation of hemoglobin bis-tetramers
    Kim Y; Kluger R
    Org Biomol Chem; 2022 Oct; 20(41):8083-8091. PubMed ID: 36205177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit-directed click coupling via doubly cross-linked hemoglobin efficiently produces readily purified functional bis-tetrameric oxygen carriers.
    Singh S; Dubinsky-Davidchik IS; Yang Y; Kluger R
    Org Biomol Chem; 2015 Dec; 13(45):11118-28. PubMed ID: 26400017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing efficiency in protein-protein coupling: subunit-directed acetylation and phase-directed CuAAC ("click coupling") in the formation of hemoglobin bis-tetramers.
    Wang A; Kluger R
    Biochemistry; 2014 Nov; 53(43):6793-9. PubMed ID: 25325574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient conversion of hemoglobin to a non-vasoactive oxygen carrier by site-specific cross-linking with azido acyl methyl phosphates followed by bio-orthogonal CuAAC with a bis-alkyne.
    Kim Y; Huang LL; Wu N; Kluger R
    Bioorg Chem; 2024 Aug; 149():107464. PubMed ID: 38810483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-promoted azide-alkyne cycloaddition for protein-protein coupling in the formation of a bis-hemoglobin as a copper-free oxygen carrier.
    Singh S; Dubinsky-Davidchik IS; Kluger R
    Org Biomol Chem; 2016 Oct; 14(42):10011-10017. PubMed ID: 27714247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linked hemoglobin bis-tetramers from bioorthogonal coupling do not induce vasoconstriction in the circulation.
    Wang A; Singh S; Yu B; Bloch DB; Zapol WM; Kluger R
    Transfusion; 2019 Jan; 59(1):359-370. PubMed ID: 30444016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Nitrite Reductase Activity and Its Correlation with Oxygen Affinity in Hemoglobin Bis-Tetramers.
    Wang A; Kluger R
    Biochemistry; 2016 Aug; 55(33):4688-96. PubMed ID: 27454142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin bis-tetramers via cooperative azide-alkyne coupling.
    Foot JS; Lui FE; Kluger R
    Chem Commun (Camb); 2009 Dec; (47):7315-7. PubMed ID: 20024213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient CuAAC click formation of functional hemoglobin bis-tetramers.
    Yang Y; Kluger R
    Chem Commun (Camb); 2010 Oct; 46(40):7557-9. PubMed ID: 20852763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing nitrite reductase activity of modified hemoglobin: bis-tetramers and their PEGylated derivatives.
    Lui FE; Kluger R
    Biochemistry; 2009 Dec; 48(50):11912-9. PubMed ID: 19894773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional cross-linked hemoglobin bis-tetramers: geometry and cooperativity.
    Hu D; Kluger R
    Biochemistry; 2008 Nov; 47(47):12551-61. PubMed ID: 18956893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioorthogonal phase-directed copper-catalyzed azide-alkyne cycloaddition (PDCuAAC) coupling of selectively cross-linked superoxide dismutase dimers produces a fully active bis-dimer.
    Siren EM; Singh S; Kluger R
    Org Biomol Chem; 2015 Oct; 13(40):10244-9. PubMed ID: 26308144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conjoined hemoglobins. Loss of cooperativity and protein-protein interactions.
    Gourianov N; Kluger R
    Biochemistry; 2005 Nov; 44(45):14989-99. PubMed ID: 16274245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.
    Zhu L; Brassard CJ; Zhang X; Guha PM; Clark RJ
    Chem Rec; 2016 Jun; 16(3):1501-17. PubMed ID: 27216993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-linked bis-hemoglobins: connections and oxygen binding.
    Gourianov N; Kluger R
    J Am Chem Soc; 2003 Sep; 125(36):10885-92. PubMed ID: 12952468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bowl-Shaped Symmetric and Non-symmetric Bis-functionalized Indacenopicenes.
    Bayer J; Huhn T
    J Org Chem; 2022 Apr; 87(8):5257-5278. PubMed ID: 35387449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of beta116 His (G18) at alpha1beta1 contact sites for alphabeta assembly and autoxidation of hemoglobin.
    Adachi K; Yang Y; Lakka V; Wehrli S; Reddy KS; Surrey S
    Biochemistry; 2003 Sep; 42(34):10252-9. PubMed ID: 12939154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.
    Zhang X; Liu P; Zhu L
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient generation of dendritic arrays of cross-linked hemoglobin: symmetry and redundancy.
    Hu D; Kluger R
    Org Biomol Chem; 2008 Jan; 6(1):151-6. PubMed ID: 18075660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.