These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36205891)

  • 1. Recording of Chromaffin Cell Electrical Activity In Situ in Acute Adrenal Slices.
    Guérineau NC
    Methods Mol Biol; 2023; 2565():113-127. PubMed ID: 36205891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla.
    de Diego AM; Gandía L; García AG
    Acta Physiol (Oxf); 2008 Feb; 192(2):287-301. PubMed ID: 18005392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: A role in catecholamine release.
    Martin AO; Mathieu MN; Chevillard C; Guérineau NC
    J Neurosci; 2001 Aug; 21(15):5397-405. PubMed ID: 11466411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ.
    Milman A; Ventéo S; Bossu JL; Fontanaud P; Monteil A; Lory P; Guérineau NC
    J Physiol; 2021 Mar; 599(6):1855-1883. PubMed ID: 33450050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices.
    Albiñana E; Segura-Chama P; Baraibar AM; Hernández-Cruz A; Hernández-Guijo JM
    J Neurochem; 2015 May; 133(4):511-21. PubMed ID: 25683177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway.
    Kuri BA; Chan SA; Smith CB
    J Neurochem; 2009 Aug; 110(4):1214-25. PubMed ID: 19508428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla.
    Guérineau NC
    Vitam Horm; 2024; 124():221-295. PubMed ID: 38408800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pituitary adenylate cyclase-activating peptide enhances electrical coupling in the mouse adrenal medulla.
    Hill J; Lee SK; Samasilp P; Smith C
    Am J Physiol Cell Physiol; 2012 Aug; 303(3):C257-66. PubMed ID: 22592408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional organization of chromaffin cells and cholinergic synaptic transmission in rat adrenal medulla.
    Kajiwara R; Sand O; Kidokoro Y; Barish ME; Iijima T
    Jpn J Physiol; 1997 Oct; 47(5):449-64. PubMed ID: 9504132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced calcium current density in female versus male mouse adrenal chromaffin cells in situ.
    Chan SA; Hill J; Smith C
    Cell Calcium; 2012; 52(3-4):313-20. PubMed ID: 22551621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes of chromaffin cell secretory response to hypoxia studied in thin adrenal slices.
    García-Fernández M; Mejías R; López-Barneo J
    Pflugers Arch; 2007 Apr; 454(1):93-100. PubMed ID: 17165070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action potential-induced quantal secretion of catecholamines from rat adrenal chromaffin cells.
    Zhou Z; Misler S
    J Biol Chem; 1995 Feb; 270(8):3498-505. PubMed ID: 7876083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C.
    Kuri BA; Khan SA; Chan SA; Prabhakar NR; Smith CB
    J Physiol; 2007 Oct; 584(Pt 1):313-9. PubMed ID: 17702812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of vasopressin on isolated rat adrenal chromaffin cells.
    Takeda M; Dubey R; Phillips JK; Matsumoto S; Lipski J
    Regul Pept; 2002 Jun; 106(1-3):55-65. PubMed ID: 12047911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adrenal slice preparation for the study of chromaffin cells and their cholinergic innervation.
    Barbara JG; Poncer JC; McKinney RA; Takeda K
    J Neurosci Methods; 1998 Apr; 80(2):181-9. PubMed ID: 9667391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium Imaging and Amperometric Recording in Cultured Chromaffin Cells and Adrenal Slices from Normotensive, Wistar Kyoto Rats and Spontaneously Hypertensive Rats.
    Alejandre-García T; Segura-Chama P; Parada-Parra OJ; Millán-Aldaco D; Hernández-Cruz A
    Methods Mol Biol; 2023; 2565():129-151. PubMed ID: 36205892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L; Chan SA; Smith C
    Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological and morphological features underlying neurotransmission efficacy at the splanchnic nerve-chromaffin cell synapse of bovine adrenal medulla.
    de Diego AM
    Am J Physiol Cell Physiol; 2010 Feb; 298(2):C397-405. PubMed ID: 19940070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells.
    Martin AO; Mathieu MN; Guérineau NC
    J Neurosci; 2003 May; 23(9):3669-78. PubMed ID: 12736338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adrenal medulla calcium channel population is not conserved in bovine chromaffin cells in culture.
    Benavides A; Calvo S; Tornero D; González-García C; Ceña V
    Neuroscience; 2004; 128(1):99-109. PubMed ID: 15450357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.