These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36205897)
1. Methodologies for Detecting Quantal Exocytosis in Adrenal Chromaffin Cells Through Diamond-Based MEAs. Tomagra G; Franchino C; Carbone E; Marcantoni A; Pasquarelli A; Picollo F; Carabelli V Methods Mol Biol; 2023; 2565():213-221. PubMed ID: 36205897 [TBL] [Abstract][Full Text] [Related]
2. Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Tomagra G; Picollo F; Battiato A; Picconi B; De Marchis S; Pasquarelli A; Olivero P; Marcantoni A; Calabresi P; Carbone E; Carabelli V Front Neurosci; 2019; 13():288. PubMed ID: 31024230 [TBL] [Abstract][Full Text] [Related]
3. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands. Picollo F; Battiato A; Bernardi E; Marcantoni A; Pasquarelli A; Carbone E; Olivero P; Carabelli V Anal Chem; 2016 Aug; 88(15):7493-9. PubMed ID: 27376596 [TBL] [Abstract][Full Text] [Related]
4. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells. Gao Y; Chen X; Gupta S; Gillis KD; Gangopadhyay S Biomed Microdevices; 2008 Oct; 10(5):623-9. PubMed ID: 18493856 [TBL] [Abstract][Full Text] [Related]
5. A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Picollo F; Gosso S; Vittone E; Pasquarelli A; Carbone E; Olivero P; Carabelli V Adv Mater; 2013 Sep; 25(34):4696-700. PubMed ID: 23847004 [TBL] [Abstract][Full Text] [Related]
6. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. Carabelli V; Marcantoni A; Picollo F; Battiato A; Bernardi E; Pasquarelli A; Olivero P; Carbone E ACS Chem Neurosci; 2017 Feb; 8(2):252-264. PubMed ID: 28027435 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the Study of Quantal Exocytotic Events: Combining Diamond Multi-Electrode Arrays with Amperometric PEak Analysis (APE) an Automated Analysis Code. Tomagra G; Re A; Varzi V; Aprà P; Britel A; Franchino C; Sturari S; Amine NH; Westerink RHS; Carabelli V; Picollo F Biosensors (Basel); 2023 Dec; 13(12):. PubMed ID: 38131793 [TBL] [Abstract][Full Text] [Related]
8. Extracellular Ca²⁺ per se inhibits quantal size of catecholamine release in adrenal slice chromaffin cells. Shang S; Wang C; Liu B; Wu Q; Zhang Q; Liu W; Zheng L; Xu H; Kang X; Zhang X; Wang Y; Zheng H; Wang S; Xiong W; Liu T; Zhou Z Cell Calcium; 2014 Sep; 56(3):202-7. PubMed ID: 25103334 [TBL] [Abstract][Full Text] [Related]
9. The firing frequency of spontaneous action potentials and their corresponding evoked exocytosis are increased in chromaffin cells of CCl Sanz-Lázaro S; Jiménez-Pompa A; Carmona-Hidalgo B; Ubeda M; Muñoz L; Caba-González JC; Hernández-Vivanco A; López-García S; Albillos A; Albillos A J Neurochem; 2019 Feb; 148(3):359-372. PubMed ID: 30347483 [TBL] [Abstract][Full Text] [Related]
10. Granule matrix property and rapid "kiss-and-run" exocytosis contribute to the different kinetics of catecholamine release from carotid glomus and adrenal chromaffin cells at matched quantal size. Wang N; Lee AK; Yan L; Simpson MR; Tse A; Tse FW Can J Physiol Pharmacol; 2012 Jun; 90(6):791-801. PubMed ID: 22506963 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. Gosso S; Turturici M; Franchino C; Colombo E; Pasquarelli A; Carbone E; Carabelli V J Physiol; 2014 Aug; 592(15):3215-30. PubMed ID: 24879870 [TBL] [Abstract][Full Text] [Related]
13. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. Gavello D; Vandael D; Gosso S; Carbone E; Carabelli V J Physiol; 2015 Nov; 593(22):4835-53. PubMed ID: 26282459 [TBL] [Abstract][Full Text] [Related]
14. Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. Doreian BW; Fulop TG; Smith CB J Neurosci; 2008 Apr; 28(17):4470-8. PubMed ID: 18434525 [TBL] [Abstract][Full Text] [Related]
15. Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells. De Alwis AC; Denison JD; Shah R; McCarty GS; Sombers LA ACS Sens; 2023 Aug; 8(8):3187-3194. PubMed ID: 37552870 [TBL] [Abstract][Full Text] [Related]
16. A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells. Gao Y; Bhattacharya S; Chen X; Barizuddin S; Gangopadhyay S; Gillis KD Lab Chip; 2009 Dec; 9(23):3442-6. PubMed ID: 19904414 [TBL] [Abstract][Full Text] [Related]
17. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Sun X; Gillis KD Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759 [TBL] [Abstract][Full Text] [Related]
18. Facilitation of quantal release induced by a D1-like receptor on bovine chromaffin cells. Villanueva M; Wightman RM Biochemistry; 2007 Mar; 46(12):3881-7. PubMed ID: 17338553 [TBL] [Abstract][Full Text] [Related]
19. Brefeldin A increases the quantal size and alters the kinetics of catecholamine release from rat adrenal chromaffin cells. Xu J; Tse FW J Biol Chem; 1999 Jul; 274(27):19095-102. PubMed ID: 10383412 [TBL] [Abstract][Full Text] [Related]
20. Blockade by nanomolar resveratrol of quantal catecholamine release in chromaffin cells. Fernández-Morales JC; Yáñez M; Orallo F; Cortés L; González JC; Hernández-Guijo JM; García AG; de Diego AM Mol Pharmacol; 2010 Oct; 78(4):734-44. PubMed ID: 20631052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]