These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36206342)
1. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. Zhang X; Yang C; An P; Cui C; Ma Y; Liu H; Wang H; Yan X; Li G; Tang Z Sci Adv; 2022 Oct; 8(40):eadd5678. PubMed ID: 36206342 [TBL] [Abstract][Full Text] [Related]
2. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
3. Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO-66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone. Cai X; Xu Q; Tu G; Fu Y; Zhang F; Zhu W Front Chem; 2019; 7():42. PubMed ID: 30775365 [TBL] [Abstract][Full Text] [Related]
4. Fe-O Clusters Anchored on Nodes of Metal-Organic Frameworks for Direct Methane Oxidation. Zhao W; Shi Y; Jiang Y; Zhang X; Long C; An P; Zhu Y; Shao S; Yan Z; Li G; Tang Z Angew Chem Int Ed Engl; 2021 Mar; 60(11):5811-5815. PubMed ID: 33169485 [TBL] [Abstract][Full Text] [Related]
5. Engineering zirconium-based UiO-66 for effective chemical conversion of d-xylose to lactic acid in aqueous condition. Ponchai P; Adpakpang K; Thongratkaew S; Chaipojjana K; Wannapaiboon S; Siwaipram S; Faungnawakij K; Bureekaew S Chem Commun (Camb); 2020 Jul; 56(58):8019-8022. PubMed ID: 32613968 [TBL] [Abstract][Full Text] [Related]
6. Exploring the Fundamental Roles of Functionalized Ligands in Platinum@Metal-Organic Framework Catalysts. Zhang W; Ji W; Li L; Qin P; Khalil IE; Gu Z; Wang P; Li H; Fan Y; Ren Z; Shen Y; Zhang W; Fu Y; Huo F ACS Appl Mater Interfaces; 2020 Nov; 12(47):52660-52667. PubMed ID: 33169972 [TBL] [Abstract][Full Text] [Related]
7. Metal Nodes of Metal-Organic Frameworks can Activate Molecular Hydrogen. Melillo A; Franconetti A; Alvaro M; Ferrer B; Garcia H Chemistry; 2023 Jan; 29(1):e202202625. PubMed ID: 36152311 [TBL] [Abstract][Full Text] [Related]
8. Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal-Organic Frameworks. Choe K; Zheng F; Wang H; Yuan Y; Zhao W; Xue G; Qiu X; Ri M; Shi X; Wang Y; Li G; Tang Z Angew Chem Int Ed Engl; 2020 Feb; 59(9):3650-3657. PubMed ID: 31828892 [TBL] [Abstract][Full Text] [Related]
9. Hybridization of Pd Nanoparticles with UiO-66(Hf) Metal-Organic Framework and the Effect of Nanostructure on the Catalytic Properties. Bakuru VR; Velaga B; Peela NR; Kalidindi SB Chemistry; 2018 Oct; 24(60):15978-15982. PubMed ID: 30141217 [TBL] [Abstract][Full Text] [Related]
10. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. Rojas-Buzo S; García-García P; Corma A ChemSusChem; 2018 Jan; 11(2):432-438. PubMed ID: 29139603 [TBL] [Abstract][Full Text] [Related]
11. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. Wright WR; Palkovits R ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968 [TBL] [Abstract][Full Text] [Related]
12. Zirconium Metal-Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation. Bůžek D; Demel J; Lang K Inorg Chem; 2018 Nov; 57(22):14290-14297. PubMed ID: 30371080 [TBL] [Abstract][Full Text] [Related]
13. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456 [TBL] [Abstract][Full Text] [Related]
14. Transforming CO Yang K; Jiang J ACS Appl Mater Interfaces; 2021 Dec; 13(49):58723-58736. PubMed ID: 34846838 [TBL] [Abstract][Full Text] [Related]
15. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO Kurisingal JF; Rachuri Y; Palakkal AS; Pillai RS; Gu Y; Choe Y; Park DW ACS Appl Mater Interfaces; 2019 Nov; 11(44):41458-41471. PubMed ID: 31613085 [TBL] [Abstract][Full Text] [Related]
16. Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Zhao M; Ou S; Wu CD Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017 [TBL] [Abstract][Full Text] [Related]
17. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chia M; Dumesic JA Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944 [TBL] [Abstract][Full Text] [Related]
18. Interplay of Lewis and Brønsted Acid Sites in Zr-Based Metal-Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. Wang F; Chen Z; Chen H; Goetjen TA; Li P; Wang X; Alayoglu S; Ma K; Chen Y; Wang T; Islamoglu T; Fang Y; Snurr RQ; Farha OK ACS Appl Mater Interfaces; 2019 Sep; 11(35):32090-32096. PubMed ID: 31441295 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Van der Waals Interactions of Functionalized UiO-66 with Non-polar Adsorbates: The Unique Effect of para Hydroxyl Groups. Tovar TM; Iordanov I; Sava Gallis DF; DeCoste JB Chemistry; 2018 Feb; 24(8):1931-1937. PubMed ID: 29227560 [TBL] [Abstract][Full Text] [Related]
20. Zirconium-oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Fang G; Hu JN; Tian LC; Liang JX; Lin J; Li L; Zhu C; Wang X Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202205077. PubMed ID: 35768887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]