BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36206342)

  • 1. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis.
    Zhang X; Yang C; An P; Cui C; Ma Y; Liu H; Wang H; Yan X; Li G; Tang Z
    Sci Adv; 2022 Oct; 8(40):eadd5678. PubMed ID: 36206342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO-66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone.
    Cai X; Xu Q; Tu G; Fu Y; Zhang F; Zhu W
    Front Chem; 2019; 7():42. PubMed ID: 30775365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe-O Clusters Anchored on Nodes of Metal-Organic Frameworks for Direct Methane Oxidation.
    Zhao W; Shi Y; Jiang Y; Zhang X; Long C; An P; Zhu Y; Shao S; Yan Z; Li G; Tang Z
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5811-5815. PubMed ID: 33169485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering zirconium-based UiO-66 for effective chemical conversion of d-xylose to lactic acid in aqueous condition.
    Ponchai P; Adpakpang K; Thongratkaew S; Chaipojjana K; Wannapaiboon S; Siwaipram S; Faungnawakij K; Bureekaew S
    Chem Commun (Camb); 2020 Jul; 56(58):8019-8022. PubMed ID: 32613968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Fundamental Roles of Functionalized Ligands in Platinum@Metal-Organic Framework Catalysts.
    Zhang W; Ji W; Li L; Qin P; Khalil IE; Gu Z; Wang P; Li H; Fan Y; Ren Z; Shen Y; Zhang W; Fu Y; Huo F
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52660-52667. PubMed ID: 33169972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Nodes of Metal-Organic Frameworks can Activate Molecular Hydrogen.
    Melillo A; Franconetti A; Alvaro M; Ferrer B; Garcia H
    Chemistry; 2023 Jan; 29(1):e202202625. PubMed ID: 36152311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the conversion of ethyl levulinate to γ-valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework.
    Yang J; Huang W; Liu Y; Zhou T
    RSC Adv; 2018 May; 8(30):16611-16618. PubMed ID: 35540507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Selective Semihydrogenation of Alkynes by Palladium Nanoparticles Sandwiched in Metal-Organic Frameworks.
    Choe K; Zheng F; Wang H; Yuan Y; Zhao W; Xue G; Qiu X; Ri M; Shi X; Wang Y; Li G; Tang Z
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3650-3657. PubMed ID: 31828892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization of Pd Nanoparticles with UiO-66(Hf) Metal-Organic Framework and the Effect of Nanostructure on the Catalytic Properties.
    Bakuru VR; Velaga B; Peela NR; Kalidindi SB
    Chemistry; 2018 Oct; 24(60):15978-15982. PubMed ID: 30141217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.
    Rojas-Buzo S; García-García P; Corma A
    ChemSusChem; 2018 Jan; 11(2):432-438. PubMed ID: 29139603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.
    Wright WR; Palkovits R
    ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zirconium Metal-Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation.
    Bůžek D; Demel J; Lang K
    Inorg Chem; 2018 Nov; 57(22):14290-14297. PubMed ID: 30371080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites.
    Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C
    Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming CO
    Yang K; Jiang J
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58723-58736. PubMed ID: 34846838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO
    Kurisingal JF; Rachuri Y; Palakkal AS; Pillai RS; Gu Y; Choe Y; Park DW
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41458-41471. PubMed ID: 31613085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.
    Chia M; Dumesic JA
    Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay of Lewis and Brønsted Acid Sites in Zr-Based Metal-Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid.
    Wang F; Chen Z; Chen H; Goetjen TA; Li P; Wang X; Alayoglu S; Ma K; Chen Y; Wang T; Islamoglu T; Fang Y; Snurr RQ; Farha OK
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32090-32096. PubMed ID: 31441295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Van der Waals Interactions of Functionalized UiO-66 with Non-polar Adsorbates: The Unique Effect of para Hydroxyl Groups.
    Tovar TM; Iordanov I; Sava Gallis DF; DeCoste JB
    Chemistry; 2018 Feb; 24(8):1931-1937. PubMed ID: 29227560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.