BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36206351)

  • 1. Monitoring the Activity and Inhibition of Cholinesterase Enzymes using Single-Walled Carbon Nanotube Fluorescent Sensors.
    Loewenthal D; Kamber D; Bisker G
    Anal Chem; 2022 Oct; 94(41):14223-14231. PubMed ID: 36206351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organophosphate pesticides and nerve agents.
    Wang J; Timchalk C; Lin Y
    Environ Sci Technol; 2008 Apr; 42(7):2688-93. PubMed ID: 18505017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of organophosphate pesticide using polyaniline and carbon nanotubes composite based on acetylcholinesterase inhibition.
    Chen D; Chen C; Du D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5662-6. PubMed ID: 21133088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally Designed Functionalization of Single-Walled Carbon Nanotubes for Real-Time Monitoring of Cholinesterase Activity and Inhibition in Plasma.
    Basu S; Hendler-Neumark A; Bisker G
    Small; 2024 Feb; ():e2309481. PubMed ID: 38358018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood acetylcholinesterase and butyrylcholinesterase as biomarkers of cholinesterase depression among pesticide handlers.
    Strelitz J; Engel LS; Keifer MC
    Occup Environ Med; 2014 Dec; 71(12):842-7. PubMed ID: 25189163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase.
    Pohanka M
    Curr Med Chem; 2020; 27(18):2994-3011. PubMed ID: 30706778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine and its bromo-derivative as dual cholinesterase inhibitors.
    Nuthakki VK; Mudududdla R; Sharma A; Kumar A; Bharate SB
    Bioorg Chem; 2019 Sep; 90():103062. PubMed ID: 31220673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress of biosensors based on cholinesterase inhibition.
    Pohanka M; Musilek K; Kuca K
    Curr Med Chem; 2009; 16(14):1790-8. PubMed ID: 19442145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylcholinesterase and butyrylcholinesterase are expressed in the spinal meninges of monkeys and pigs.
    Ummenhofer WC; Brown SM; Bernards CM
    Anesthesiology; 1998 May; 88(5):1259-65. PubMed ID: 9605686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of acetylcholinesterase and butyrylcholinesterase
    Tang X; Zhang Y; Wang Q; Li Z; Zhang C
    Chem Commun (Camb); 2024 Feb; 60(15):2082-2085. PubMed ID: 38293842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the behavior of acetylcholinesterase immobilized on carbon nanotubes in the presence of inhibitors.
    Cabral MF; Sgobbi LF; Kataoka EM; Machado SA
    Colloids Surf B Biointerfaces; 2013 Nov; 111():30-5. PubMed ID: 23777789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholinesterase biosensor based on single-walled carbon nanotubes--Co phtalocyanine for organophosphorus pesticides detection.
    Ivanov AN; Younusov RR; Evtugyn GA; Arduini F; Moscone D; Palleschi G
    Talanta; 2011 Jul; 85(1):216-21. PubMed ID: 21645691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy.
    Wilkinson DG; Francis PT; Schwam E; Payne-Parrish J
    Drugs Aging; 2004; 21(7):453-78. PubMed ID: 15132713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective Application of Two New Pyridine-Based Zinc (II) Amide Carboxylate in Management of Alzheimer's Disease: Synthesis, Characterization, Computational and in vitro Approaches.
    Zafar R; Naureen H; Zubair M; Shahid K; Saeed Jan M; Akhtar S; Ahmad H; Waseem W; Haider A; Ali S; Tariq M; Sadiq A
    Drug Des Devel Ther; 2021; 15():2679-2694. PubMed ID: 34188447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin.
    Kumar S
    Indian J Pharmacol; 2015; 47(4):444-6. PubMed ID: 26288480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoquinoline Alkaloid Contents in
    Tuzimski T; Petruczynik A; Szultka-Młyńska M; Sugajski M; Buszewski B
    Molecules; 2022 Jun; 27(11):. PubMed ID: 35684539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two birds with one stone: The detection of nerve agents and AChE activity with an ICT-ESIPT-based fluorescence sensor.
    Meng W; Pei Z; Wang Y; Sun M; Xu Q; Cen J; Guo K; Xiao K; Li Z
    J Hazard Mater; 2021 May; 410():124811. PubMed ID: 33450470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BChE inhibitors from marine organisms - A review.
    Lins Alves LK; Cechinel Filho V; de Souza RLR; Furtado-Alle L
    Chem Biol Interact; 2022 Nov; 367():110136. PubMed ID: 36096160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New (benz)imidazolopyridino tacrines as nonhepatotoxic, cholinesterase inhibitors for Alzheimer disease.
    Boulebd H; Ismaili L; Martin H; Bonet A; Chioua M; Marco Contelles J; Belfaitah A
    Future Med Chem; 2017 May; 9(8):723-729. PubMed ID: 28485637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum cholinesterase biomarker study in farmers - Souss Massa region-, Morocco: case-control study.
    Sine H; Grafel KE; Alkhammal S; Achbani A; Filali K
    Biomarkers; 2019 Dec; 24(8):771-775. PubMed ID: 31642715
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.