These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36206457)

  • 1. Recent advances and persistent challenges in the design of freeze-drying process for monoclonal antibodies.
    Hsein H; Auffray J; Noel T; Tchoreloff P
    Pharm Dev Technol; 2022 Nov; 27(9):942-955. PubMed ID: 36206457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals.
    Bjelošević M; Seljak KB; Trstenjak U; Logar M; Brus B; Ahlin Grabnar P
    Eur J Pharm Sci; 2018 Sep; 122():292-302. PubMed ID: 30006178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in freeze-drying: variables, cycle optimization, and innovative techniques.
    Mehanna MM; Abla KK
    Pharm Dev Technol; 2022 Oct; 27(8):904-923. PubMed ID: 36174214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of dextran on thermal properties, product quality attributes, and monoclonal antibody stability in freeze-dried formulations.
    Haeuser C; Goldbach P; Huwyler J; Friess W; Allmendinger A
    Eur J Pharm Biopharm; 2020 Feb; 147():45-56. PubMed ID: 31866444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of murine monoclonal antibody to tumor necrosis factor (TNF-MAb) formulation for freeze-drying cycle development.
    Ma X; Wang DQ; Bouffard R; MacKenzie A
    Pharm Res; 2001 Feb; 18(2):196-202. PubMed ID: 11405291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying.
    Mortier STFC; Van Bockstal PJ; Corver J; Nopens I; Gernaey KV; De Beer T
    Eur J Pharm Biopharm; 2016 Jun; 103():71-83. PubMed ID: 26992290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 100% Control of Controlled Ice Nucleation Vials by Camera-Supported Optical Inspection in Freeze-Drying.
    Lenger JH; Geidobler R; Halbinger W; Presser I; Winter G
    PDA J Pharm Sci Technol; 2022; 76(2):120-135. PubMed ID: 34131013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of freeze-drying processes for pharmaceuticals: practical advice.
    Tang X; Pikal MJ
    Pharm Res; 2004 Feb; 21(2):191-200. PubMed ID: 15032301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Packaging Materials in Freeze-Drying: Use of Polymer Caps and Nested Vials and Their Impact on Process and Product Attributes.
    Wenzel T; Gieseler H
    AAPS PharmSciTech; 2021 Feb; 22(3):82. PubMed ID: 33624199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products.
    Abla KK; Mehanna MM
    Int J Pharm; 2022 Nov; 628():122233. PubMed ID: 36183914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    J Pharm Sci; 2019 Apr; 108(4):1378-1395. PubMed ID: 30529167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-Assisted Freeze-Drying of Monoclonal Antibodies: Product Quality Aspects and Storage Stability.
    Gitter JH; Geidobler R; Presser I; Winter G
    Pharmaceutics; 2019 Dec; 11(12):. PubMed ID: 31842296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Nov; 107(11):2748-2754. PubMed ID: 30055225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    Int J Pharm; 2020 Mar; 578():119116. PubMed ID: 32027958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat flux sensor to create a design space for freeze-drying development.
    Carfagna M; Rosa M; Lucke M; Hawe A; Frieß W
    Eur J Pharm Biopharm; 2020 Aug; 153():84-94. PubMed ID: 32497769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability.
    Ramos Yacasi GR; Calpena Campmany AC; Egea Gras MA; Espina García M; García López ML
    Drug Dev Ind Pharm; 2017 Apr; 43(4):637-651. PubMed ID: 28044462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.