These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36206506)

  • 1. Efficient Bacterial Genome Engineering throughout the Central Dogma Using the Dual-Selection Marker
    Bayer CN; Sepulchro AGV; Rennig M; Nørholm MHH
    ACS Synth Biol; 2022 Oct; 11(10):3440-3450. PubMed ID: 36206506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive and negative selection using the tetA-sacB cassette: recombineering and P1 transduction in Escherichia coli.
    Li XT; Thomason LC; Sawitzke JA; Costantino N; Court DL
    Nucleic Acids Res; 2013 Dec; 41(22):e204. PubMed ID: 24203710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligo- and dsDNA-mediated genome editing using a tetA dual selection system in Escherichia coli.
    Ryu YS; Chandran SP; Kim K; Lee SK
    PLoS One; 2017; 12(7):e0181501. PubMed ID: 28719630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli.
    Reisch CR; Prather KL
    Sci Rep; 2015 Oct; 5():15096. PubMed ID: 26463009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and efficient genome recombineering using kil counter-selection in Escherichia coli.
    Chen W; Li Y; Wu G; Zhao L; Lu L; Wang P; Zhou J; Cao C; Li S
    J Biotechnol; 2019 Mar; 294():58-66. PubMed ID: 30768999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excision of selectable markers from the Escherichia coli genome without counterselection using an optimized λRed recombineering procedure.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2019 Mar; 158():86-92. PubMed ID: 30738107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex Genome Editing in Escherichia coli.
    Jensen SI; Nielsen AT
    Methods Mol Biol; 2018; 1671():119-129. PubMed ID: 29170956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.
    Ryu YS; Biswas RK; Shin K; Parisutham V; Kim SM; Lee SK
    PLoS One; 2014; 9(4):e94266. PubMed ID: 24747264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing.
    Reisch CR; Prather KLJ
    Curr Protoc Mol Biol; 2017 Jan; 117():31.8.1-31.8.20. PubMed ID: 28060411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain engineering by genome mass transfer: efficient chromosomal trait transfer method utilizing donor genomic DNA and recipient recombineering hosts.
    Williams JA; Luke J; Hodgson C
    Mol Biotechnol; 2009 Sep; 43(1):41-51. PubMed ID: 19455439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 14. Efficient long fragment editing technique enables large-scale and scarless bacterial genome engineering.
    Huang C; Guo L; Wang J; Wang N; Huo YX
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7943-7956. PubMed ID: 32794018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved bacterial recombineering by parallelized protein discovery.
    Wannier TM; Nyerges A; Kuchwara HM; Czikkely M; Balogh D; Filsinger GT; Borders NC; Gregg CJ; Lajoie MJ; Rios X; Pál C; Church GM
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13689-13698. PubMed ID: 32467157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Integrated System for Precise Genome Modification in Escherichia coli.
    Tas H; Nguyen CT; Patel R; Kim NH; Kuhlman TE
    PLoS One; 2015; 10(9):e0136963. PubMed ID: 26332675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of new versatile plasmid-based systems for λRed-mediated Escherichia coli genome engineering.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2018 Aug; 151():48-56. PubMed ID: 29885886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombineering-Mediated Genome Editing in Burkholderiales Strains.
    Wang X; Liu J; Zheng W; Zhang Y; Bian X
    Methods Mol Biol; 2022; 2479():21-36. PubMed ID: 35583730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.