BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 36206523)

  • 21. CRISPRi-based circuits to control gene expression in plants.
    Khan MA; Herring G; Zhu JY; Oliva M; Fourie E; Johnston B; Zhang Z; Potter J; Pineda L; Pflueger J; Swain T; Pflueger C; Lloyd JPB; Secco D; Small I; Kidd BN; Lister R
    Nat Biotechnol; 2024 May; ():. PubMed ID: 38769424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic circuits based on split Cas9 to detect cellular events.
    Przybyszewska-Podstawka A; Czapiński J; Kałafut J; Rivero-Müller A
    Sci Rep; 2023 Sep; 13(1):14988. PubMed ID: 37696879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Establishing Tunable Genetic Logic Gates with Versatile Dynamic Performance by Varying Regulatory Parameters.
    Jiang T; Teng Y; Li C; Gan Q; Zhang J; Zou Y; Desai BK; Yan Y
    ACS Synth Biol; 2023 Dec; 12(12):3730-3742. PubMed ID: 38033235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boolean logic in synthetic biology and biomaterials: Towards living materials in mammalian cell therapeutics.
    Bressler EM; Adams S; Liu R; Colson YL; Wong WW; Grinstaff MW
    Clin Transl Med; 2023 Jul; 13(7):e1244. PubMed ID: 37386762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aptamer-Mediated Reversible Transactivation of Gene Expression by Light.
    Renzl C; Kakoti A; Mayer G
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22414-22418. PubMed ID: 32865316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells.
    Makri Pistikou AM; Cremers GAO; Nathalia BL; Meuleman TJ; Bögels BWA; Eijkens BV; de Dreu A; Bezembinder MTH; Stassen OMJA; Bouten CCV; Merkx M; Jerala R; de Greef TFA
    Nat Commun; 2023 Nov; 14(1):7001. PubMed ID: 37919273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of fast proteolysis-based signaling and logic circuits in mammalian cells.
    Fink T; Lonzarić J; Praznik A; Plaper T; Merljak E; Leben K; Jerala N; Lebar T; Strmšek Ž; Lapenta F; Benčina M; Jerala R
    Nat Chem Biol; 2019 Feb; 15(2):115-122. PubMed ID: 30531965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Inducible CRISPR-dCas9-Based Transcriptional Repression System for Cancer Therapy.
    Gu P; Zhao J; Zhang W; Ruan X; Hu L; Zeng Y; Hou X; Zheng X; Gao M; Chi J
    Small Methods; 2024 Jan; ():e2301310. PubMed ID: 38164884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Building a pipeline to identify and engineer constitutive and repressible promoters.
    Yang EJY; Nemhauser JL
    Quant Plant Biol; 2023; 4():e12. PubMed ID: 37901686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SGRN: A Cas12a-driven Synthetic Gene Regulatory Network System.
    Kang H; Fitch JC; Varghese RP; Thorne CA; Cusanovich DA
    bioRxiv; 2023 May; ():. PubMed ID: 37214915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards an Aspect-Oriented Design and Modelling Framework for Synthetic Biology.
    Boeing P; Leon M; Nesbeth DN; Finkelstein A; Barnes CP
    Processes (Basel); 2018 Sep; 6(9):167. PubMed ID: 30568914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advancing programmable gene expression in plants using CRISPRi-based Boolean gates.
    Nat Biotechnol; 2024 May; ():. PubMed ID: 38769425
    [No Abstract]   [Full Text] [Related]  

  • 33. CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization.
    Wu Y; Li Y; Jin K; Zhang L; Li J; Liu Y; Du G; Lv X; Chen J; Ledesma-Amaro R; Liu L
    Nat Chem Biol; 2023 Mar; 19(3):367-377. PubMed ID: 36646959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies.
    Jensen ED; Ferreira R; Jakočiūnas T; Arsovska D; Zhang J; Ding L; Smith JD; David F; Nielsen J; Jensen MK; Keasling JD
    Microb Cell Fact; 2017 Mar; 16(1):46. PubMed ID: 28298224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates.
    Gander MW; Vrana JD; Voje WE; Carothers JM; Klavins E
    Nat Commun; 2017 May; 8():15459. PubMed ID: 28541304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilizing RNA origami scaffolds in Saccharomyces cerevisiae for dCas9-mediated transcriptional control.
    Pothoulakis G; Nguyen MTA; Andersen ES
    Nucleic Acids Res; 2022 Jul; 50(12):7176-7187. PubMed ID: 35648481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology.
    Xu X; Qi LS
    J Mol Biol; 2019 Jan; 431(1):34-47. PubMed ID: 29958882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modular, Synthetic Boolean Logic Gates Enabled in
    Presnell KV; Melhem O; Morse NJ; Alper HS
    ACS Synth Biol; 2022 Oct; 11(10):3414-3425. PubMed ID: 36206523
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.