These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36206600)
1. Sleep classification using Consumer Sleep Technologies and AI: A review of the current landscape. Djanian S; Bruun A; Nielsen TD Sleep Med; 2022 Dec; 100():390-403. PubMed ID: 36206600 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of 11 Wearable, Nearable, and Airable Consumer Sleep Trackers: Prospective Multicenter Validation Study. Lee T; Cho Y; Cha KS; Jung J; Cho J; Kim H; Kim D; Hong J; Lee D; Keum M; Kushida CA; Yoon IY; Kim JW JMIR Mhealth Uhealth; 2023 Nov; 11():e50983. PubMed ID: 37917155 [TBL] [Abstract][Full Text] [Related]
3. Perceptions of and Experiences with Consumer Sleep Technologies That Use Artificial Intelligence. Oh E; Kearns W; Laine M; Demiris G; Thompson HJ Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632028 [TBL] [Abstract][Full Text] [Related]
5. Revisiting the value of polysomnographic data in insomnia: more than meets the eye. Andrillon T; Solelhac G; Bouchequet P; Romano F; Le Brun MP; Brigham M; Chennaoui M; Léger D Sleep Med; 2020 Feb; 66():184-200. PubMed ID: 31978862 [TBL] [Abstract][Full Text] [Related]
6. Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds. Jiang D; Ma Y; Wang Y Comput Methods Programs Biomed; 2019 Sep; 178():19-30. PubMed ID: 31416548 [TBL] [Abstract][Full Text] [Related]
7. Artificial Intelligence and Behavioral Science Through the Looking Glass: Challenges for Real-World Application. Mac Aonghusa P; Michie S Ann Behav Med; 2020 Dec; 54(12):942-947. PubMed ID: 33416835 [TBL] [Abstract][Full Text] [Related]
8. Polysomnographic validation of an under-mattress monitoring device in estimating sleep architecture and obstructive sleep apnea in adults. Ding F; Cotton-Clay A; Fava L; Easwar V; Kinsolving A; Kahn P; Rama A; Kushida C Sleep Med; 2022 Aug; 96():20-27. PubMed ID: 35576830 [TBL] [Abstract][Full Text] [Related]
9. Consumer Sleep Technology: An American Academy of Sleep Medicine Position Statement. Khosla S; Deak MC; Gault D; Goldstein CA; Hwang D; Kwon Y; O'Hearn D; Schutte-Rodin S; Yurcheshen M; Rosen IM; Kirsch DB; Chervin RD; Carden KA; Ramar K; Aurora RN; Kristo DA; Malhotra RK; Martin JL; Olson EJ; Rosen CL; Rowley JA; J Clin Sleep Med; 2018 May; 14(5):877-880. PubMed ID: 29734997 [TBL] [Abstract][Full Text] [Related]
10. [Artificial intelligence in sleep analysis (ARTISANA)--modelling visual processes in sleep classification]. Schwaibold M; Schöller B; Penzel T; Bolz A Biomed Tech (Berl); 2001 May; 46(5):129-32. PubMed ID: 11413909 [TBL] [Abstract][Full Text] [Related]
11. Ambient Assisted Living: Scoping Review of Artificial Intelligence Models, Domains, Technology, and Concerns. Jovanovic M; Mitrov G; Zdravevski E; Lameski P; Colantonio S; Kampel M; Tellioglu H; Florez-Revuelta F J Med Internet Res; 2022 Nov; 24(11):e36553. PubMed ID: 36331530 [TBL] [Abstract][Full Text] [Related]
12. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review. Langerhuizen DWG; Janssen SJ; Mallee WH; van den Bekerom MPJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN Clin Orthop Relat Res; 2019 Nov; 477(11):2482-2491. PubMed ID: 31283727 [TBL] [Abstract][Full Text] [Related]
13. A Clinical Decision Support System for Sleep Staging Tasks With Explanations From Artificial Intelligence: User-Centered Design and Evaluation Study. Hwang J; Lee T; Lee H; Byun S J Med Internet Res; 2022 Jan; 24(1):e28659. PubMed ID: 35044311 [TBL] [Abstract][Full Text] [Related]
14. Sleep versus wake classification from heart rate variability using computational intelligence: consideration of rejection in classification models. Lewicke A; Sazonov E; Corwin MJ; Neuman M; Schuckers S; IEEE Trans Biomed Eng; 2008 Jan; 55(1):108-18. PubMed ID: 18232352 [TBL] [Abstract][Full Text] [Related]
15. Out with AI, in with the psychiatrist: a preference for human-derived clinical decision support in depression care. Maslej MM; Kloiber S; Ghassemi M; Yu J; Hill SL Transl Psychiatry; 2023 Jun; 13(1):210. PubMed ID: 37328465 [TBL] [Abstract][Full Text] [Related]
16. Multivariate analysis of full-term neonatal polysomnographic data. Gerla V; Paul K; Lhotska L; Krajca V IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029 [TBL] [Abstract][Full Text] [Related]
17. Performance Evaluation of the Circadia Contactless Breathing Monitor and Sleep Analysis Algorithm for Sleep Stage Classification. Lauteslager T; Kampakis S; Williams AJ; Maslik M; Siddiqui F Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5150-5153. PubMed ID: 33019145 [TBL] [Abstract][Full Text] [Related]
18. Artificial Intelligence -based technologies in nursing: A scoping literature review of the evidence. von Gerich H; Moen H; Block LJ; Chu CH; DeForest H; Hobensack M; Michalowski M; Mitchell J; Nibber R; Olalia MA; Pruinelli L; Ronquillo CE; Topaz M; Peltonen LM Int J Nurs Stud; 2022 Mar; 127():104153. PubMed ID: 35092870 [TBL] [Abstract][Full Text] [Related]
19. Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. Fernandez EI; Ferreira AS; Cecílio MHM; Chéles DS; de Souza RCM; Nogueira MFG; Rocha JC J Assist Reprod Genet; 2020 Oct; 37(10):2359-2376. PubMed ID: 32654105 [TBL] [Abstract][Full Text] [Related]