These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36206835)

  • 1. Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering.
    Xu W; Zhu J; Hu J; Xiao L
    Life Sci; 2022 Nov; 309():121043. PubMed ID: 36206835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered biomechanical microenvironment of articular chondrocytes based on heterogeneous GelMA hydrogel composites and dynamic mechanical compression.
    Xu W; Zhu J; Cao T; Yang G; Ahmed AAQ; Xiao L
    Biomater Adv; 2023 Oct; 153():213567. PubMed ID: 37540940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering.
    Statham P; Jones E; Jennings LM; Fermor HL
    Tissue Eng Part B Rev; 2022 Apr; 28(2):405-420. PubMed ID: 33726527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspective in Achieving Stratified Articular Cartilage Repair Using Zonal Chondrocytes.
    Tee CA; Han J; Hui JHP; Lee EH; Yang Z
    Tissue Eng Part B Rev; 2023 Jun; 29(3):310-330. PubMed ID: 36416231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression.
    Guo H; Torzilli PA
    Acta Biomater; 2016 Jan; 29():170-179. PubMed ID: 26525115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells.
    Hubka KM; Dahlin RL; Meretoja VV; Kasper FK; Mikos AG
    Tissue Eng Part B Rev; 2014 Dec; 20(6):641-54. PubMed ID: 24834484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering.
    Huwe LW; Brown WE; Hu JC; Athanasiou KA
    J Tissue Eng Regen Med; 2018 May; 12(5):1163-1176. PubMed ID: 29286211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2014 Aug; 47(11):2721-9. PubMed ID: 24882738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomaterials for articular cartilage tissue engineering: Learning from biology.
    Armiento AR; Stoddart MJ; Alini M; Eglin D
    Acta Biomater; 2018 Jan; 65():1-20. PubMed ID: 29128537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical properties and mechanobiology of the articular chondrocyte.
    Chen C; Tambe DT; Deng L; Yang L
    Am J Physiol Cell Physiol; 2013 Dec; 305(12):C1202-8. PubMed ID: 24067919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Chondrocyte microenvironment and application of microfluidic chips in constructing chondrocyte microenvironment].
    Zhong W; Zhang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jan; 28(1):105-8. PubMed ID: 24693790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction.
    Demoor M; Ollitrault D; Gomez-Leduc T; Bouyoucef M; Hervieu M; Fabre H; Lafont J; Denoix JM; AudigiƩ F; Mallein-Gerin F; Legendre F; Galera P
    Biochim Biophys Acta; 2014 Aug; 1840(8):2414-40. PubMed ID: 24608030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering.
    Hall AC
    Curr Rheumatol Rep; 2019 Jun; 21(8):38. PubMed ID: 31203465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering.
    van der Kraan PM; Buma P; van Kuppevelt T; van den Berg WB
    Osteoarthritis Cartilage; 2002 Aug; 10(8):631-7. PubMed ID: 12479385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].
    Stoltz JF; Netter P; Huselstein C; de Isla N; Wei Yang J; Muller S
    Bull Acad Natl Med; 2005 Nov; 189(8):1803-14; discussion 1814-6. PubMed ID: 16737104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage.
    Waldman SD; Grynpas MD; Pilliar RM; Kandel RA
    J Orthop Res; 2003 Jan; 21(1):132-8. PubMed ID: 12507590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.