These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 36206852)
1. Adsorption of Thiotepa anticancer drugs on the BC Al-Hetty HRAK; Al-Lami MS; Jawad SF; Waleed I; Muttashar HH; Mohamed AMA; Kadhim MM; Derakhshandeh M J Biotechnol; 2022 Nov; 359():142-147. PubMed ID: 36206852 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of thiotepa anticancer drugs on the C Li JY; Tang YH; Tang L; Chen LY J Mol Model; 2022 Aug; 28(9):249. PubMed ID: 35933501 [TBL] [Abstract][Full Text] [Related]
3. Gamma-butyrolactone drug detection by Al-doped BC Ling-Yan W; Ai-Min L; Hamreh S J Mol Graph Model; 2020 Sep; 99():107632. PubMed ID: 32417724 [TBL] [Abstract][Full Text] [Related]
4. Utility of boron carbide nanotube for removal of Eriochrome blue black from wastewater: a DFT study. Xuchun W J Mol Model; 2022 Dec; 29(1):10. PubMed ID: 36526941 [TBL] [Abstract][Full Text] [Related]
5. NH3 on a BC3 nanotube: effect of doping and decoration of aluminum. Peyghan AA; Tabar MB; Kakemam J J Mol Model; 2013 Sep; 19(9):3793-8. PubMed ID: 23793743 [TBL] [Abstract][Full Text] [Related]
6. Sensing and monitoring of edifenphos molecules based on the quantum chemical approach. Zhang J; Wu J; Wu L J Mol Model; 2020 Sep; 26(10):276. PubMed ID: 32960341 [TBL] [Abstract][Full Text] [Related]
7. Conformational stability, spectroscopic and computational studies, hikes' occupied molecular orbital, lowest unoccupied molecular orbital, natural bond orbital analysis and thermodynamic parameters of anticancer drug on nanotube-A review. Ghasemi AS; Mashhadban F; Hoseini-Alfatemi SM; Sharifi-Rad J Cell Mol Biol (Noisy-le-grand); 2015 Dec; 61(8):74-8. PubMed ID: 26718433 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of the adsorption of analgesic environmental pollutants on pristine and nitrogen-doped graphene nanosheets. Perry RH Phys Chem Chem Phys; 2021 Jan; 23(2):1221-1233. PubMed ID: 33355576 [TBL] [Abstract][Full Text] [Related]
9. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices. Raissi H; Mollania F Eur J Pharm Sci; 2014 Jun; 56():37-54. PubMed ID: 24566615 [TBL] [Abstract][Full Text] [Related]
10. BeO nanotube as a promising material for anticancer drugs delivery system. Kadhim MM; Alomar S; Hachim SK; Abdullaha SA; Zedan Taban T; Alnasoud N Comput Methods Biomech Biomed Engin; 2023; 26(15):1889-1897. PubMed ID: 36580036 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the Adsorption Rubraca Anticancer Drug on the CNT(4,4-8) Nanotube as a Factor of Drug Delivery: A Theoretical Study Based on DFT Method. Sheikhi M; Shahab S; Khaleghian M; Ahmadianarog M; Azarakhshi F; Kumar R Curr Mol Med; 2019; 19(7):473-486. PubMed ID: 31057107 [TBL] [Abstract][Full Text] [Related]
12. Mechanical quantum analysis on the role of transition metals on the delivery of metformin anticancer drug by the boron phosphide nanotube. Hsu CY; A Abbood M; Kadhim Abbood N; Hemid Al-Athari AJ; Shather AH; Talib Kareem A; Hassan Ahmed H; Yadav A Comput Methods Biomech Biomed Engin; 2024 Oct; 27(13):1920-1930. PubMed ID: 37847195 [TBL] [Abstract][Full Text] [Related]
14. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation. Roosta S; Hashemianzadeh SM; Ketabi S Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():98-103. PubMed ID: 27287103 [TBL] [Abstract][Full Text] [Related]
15. Effect of functionalization on the adsorption performance of carbon nanotube as a drug delivery system for imatinib: molecular simulation study. Rezazade M; Ketabi S; Qomi M BMC Chem; 2024 Apr; 18(1):85. PubMed ID: 38678270 [TBL] [Abstract][Full Text] [Related]
16. Hexagonal boron nitride nanosheet as novel drug delivery system for anticancer drugs: Insights from DFT calculations and molecular dynamics simulations. Vatanparast M; Shariatinia Z J Mol Graph Model; 2019 Jun; 89():50-59. PubMed ID: 30870649 [TBL] [Abstract][Full Text] [Related]
17. Therapeutic potential of graphitic carbon nitride as a drug delivery system for cisplatin (anticancer drug): A DFT approach. Perveen M; Nazir S; Arshad AW; Khan MI; Shamim M; Ayub K; Khan MA; Iqbal J Biophys Chem; 2020 Dec; 267():106461. PubMed ID: 32919257 [TBL] [Abstract][Full Text] [Related]
18. Comparative prediction of binding affinity of Hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles. Mortazavifar A; Raissi H; Shahabi M J Biomol Struct Dyn; 2019 Nov; 37(18):4852-4862. PubMed ID: 30721644 [TBL] [Abstract][Full Text] [Related]
19. A molecular modeling on the potential application of beryllium oxide nanotube for delivery of hydroxyurea anticancer drug. Kadhim MM; Jihad A; Hachim SK; Abdullaha SAH; Taban TZ; Rheima AM J Mol Model; 2022 Oct; 28(11):357. PubMed ID: 36222931 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the interaction mechanism of 3-allyl-2-hydantoin anti-cancer on the pristine and functionalized BC Cao Y; Awwad NS; Ibrahium HA; Sarkar A; Ali HE; Menazea AA J Biotechnol; 2022 Feb; 345():40-46. PubMed ID: 34952091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]