These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 36206947)
1. Combining drug salt formation with amorphous solid dispersions - a double edged sword. Hiew TN; Taylor LS J Control Release; 2022 Dec; 352():47-60. PubMed ID: 36206947 [TBL] [Abstract][Full Text] [Related]
2. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Hiew TN; Zemlyanov DY; Taylor LS Mol Pharm; 2022 Feb; 19(2):392-413. PubMed ID: 34494842 [TBL] [Abstract][Full Text] [Related]
3. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Indulkar AS; Lou X; Zhang GGZ; Taylor LS Mol Pharm; 2019 Mar; 16(3):1327-1339. PubMed ID: 30669846 [TBL] [Abstract][Full Text] [Related]
4. Combining enabling formulation strategies to generate supersaturated solutions of delamanid: In situ salt formation during amorphous solid dispersion fabrication for more robust release profiles. Duong TV; Nguyen HT; Taylor LS Eur J Pharm Biopharm; 2022 May; 174():131-143. PubMed ID: 35413402 [TBL] [Abstract][Full Text] [Related]
5. Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection. Yang R; Mann AKP; Van Duong T; Ormes JD; Okoh GA; Hermans A; Taylor LS Mol Pharm; 2021 May; 18(5):2066-2081. PubMed ID: 33784104 [TBL] [Abstract][Full Text] [Related]
6. Amorphous Drug-Polymer Salts: Maximizing Proton Transfer to Enhance Stability and Release. Neusaenger AL; Yao X; Yu J; Kim S; Hui HW; Huang L; Que C; Yu L Mol Pharm; 2023 Feb; 20(2):1347-1356. PubMed ID: 36668815 [TBL] [Abstract][Full Text] [Related]
7. Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Saboo S; Kestur US; Flaherty DP; Taylor LS Mol Pharm; 2020 Apr; 17(4):1261-1275. PubMed ID: 32134677 [TBL] [Abstract][Full Text] [Related]
8. Release Enhancement by Plasticizer Inclusion for Amorphous Solid Dispersions Containing High T Correa-Soto CE; Gao Y; Indulkar AS; Zhang GGZ; Taylor LS Pharm Res; 2023 Mar; 40(3):777-790. PubMed ID: 36859747 [TBL] [Abstract][Full Text] [Related]
9. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Trasi NS; Bhujbal SV; Zemlyanov DY; Zhou QT; Taylor LS Int J Pharm X; 2020 Dec; 2():100052. PubMed ID: 32760909 [TBL] [Abstract][Full Text] [Related]
10. Effect of Buffer pH and Concentration on the Dissolution Rates of Sodium Indomethacin-Copovidone and Indomethacin-Copovidone Amorphous Solid Dispersions. Chiang CW; Tang S; Mao C; Chen Y Mol Pharm; 2023 Dec; 20(12):6451-6462. PubMed ID: 37917181 [TBL] [Abstract][Full Text] [Related]
11. Enhanced dissolution rate of nimodipine through β-lactoglobulin based formulation. Leng D; Bulduk B; Anlahr J; Müllers W; Löbmann K Int J Pharm; 2023 Mar; 635():122693. PubMed ID: 36754186 [TBL] [Abstract][Full Text] [Related]
13. Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Correa-Soto CE; Gao Y; Indulkar AS; Zhang GGZ; Taylor LS Int J Pharm; 2022 Sep; 625():122120. PubMed ID: 35987321 [TBL] [Abstract][Full Text] [Related]
14. Improved dissolution of an enteric polymer and its amorphous solid dispersions by polymer salt formation. Qi Q; Taylor LS Int J Pharm; 2022 Jun; 622():121886. PubMed ID: 35661745 [TBL] [Abstract][Full Text] [Related]
15. Effect of Counterions on Dissolution of Amorphous Solid Dispersions Studied by Surface Area Normalized Dissolution. Chen Y; Lubach JW; Tang S; Narang AS Mol Pharm; 2021 Sep; 18(9):3429-3438. PubMed ID: 34338529 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic and kinetic evaluation of the impact of polymer excipients on storage stability of amorphous itraconazole. Zhang S; Lee TWY; Chow AHL Int J Pharm; 2019 Jan; 555():394-403. PubMed ID: 30513399 [TBL] [Abstract][Full Text] [Related]
17. Complementarity of mDSC, DMA, and DRS Techniques in the Study of Thayumanasundaram S; Venkatesan TR; Ousset A; Van Hollebeke K; Aerts L; Wübbenhorst M; Van den Mooter G Mol Pharm; 2022 Jul; 19(7):2299-2315. PubMed ID: 35674392 [TBL] [Abstract][Full Text] [Related]
18. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats. Nielsen LH; Gordon S; Holm R; Selen A; Rades T; Müllertz A Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):942-51. PubMed ID: 24075980 [TBL] [Abstract][Full Text] [Related]
19. The influence of hydrogen bonding between different crystallization tendency drugs and PVPVA on the stability of amorphous solid dispersions. Wu J; Mooter GVD Int J Pharm; 2023 Nov; 646():123440. PubMed ID: 37742824 [TBL] [Abstract][Full Text] [Related]
20. Influence of Glass Forming Ability on the Physical Stability of Supersaturated Amorphous Solid Dispersions. Blaabjerg LI; Bulduk B; Lindenberg E; Löbmann K; Rades T; Grohganz H J Pharm Sci; 2019 Aug; 108(8):2561-2569. PubMed ID: 30878513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]