These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 36207089)
1. A deep learning pipeline for the automated segmentation of posterior limb of internal capsule in preterm neonates. Gruber N; Galijasevic M; Regodic M; Grams AE; Siedentopf C; Steiger R; Hammerl M; Haltmeier M; Gizewski ER; Janjic T Artif Intell Med; 2022 Oct; 132():102384. PubMed ID: 36207089 [TBL] [Abstract][Full Text] [Related]
2. An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain. Shen DD; Bao SL; Wang Y; Chen YC; Zhang YC; Li XC; Ding YC; Jia ZZ Pediatr Radiol; 2023 Jul; 53(8):1685-1697. PubMed ID: 36884052 [TBL] [Abstract][Full Text] [Related]
3. Automated olfactory bulb segmentation on high resolutional T2-weighted MRI. Estrada S; Lu R; Diers K; Zeng W; Ehses P; Stöcker T; Breteler MMB; Reuter M Neuroimage; 2021 Nov; 242():118464. PubMed ID: 34389442 [TBL] [Abstract][Full Text] [Related]
4. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759 [TBL] [Abstract][Full Text] [Related]
5. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693 [TBL] [Abstract][Full Text] [Related]
6. 3D whole brain segmentation using spatially localized atlas network tiles. Huo Y; Xu Z; Xiong Y; Aboud K; Parvathaneni P; Bao S; Bermudez C; Resnick SM; Cutting LE; Landman BA Neuroimage; 2019 Jul; 194():105-119. PubMed ID: 30910724 [TBL] [Abstract][Full Text] [Related]
7. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
8. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network. He Y; Qin W; Wu Y; Zhang M; Yang Y; Liu X; Zheng H; Liang D; Hu Z J Xray Sci Technol; 2020; 28(3):541-553. PubMed ID: 32176675 [TBL] [Abstract][Full Text] [Related]
9. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]
10. Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network. Soomro MH; Coppotelli M; Conforto S; Schmid M; Giunta G; Del Secco L; Neri E; Caruso D; Rengo M; Laghi A J Healthc Eng; 2019; 2019():1075434. PubMed ID: 30838121 [TBL] [Abstract][Full Text] [Related]
11. Three-stage segmentation of lung region from CT images using deep neural networks. Osadebey M; Andersen HK; Waaler D; Fossaa K; Martinsen ACT; Pedersen M BMC Med Imaging; 2021 Jul; 21(1):112. PubMed ID: 34266391 [TBL] [Abstract][Full Text] [Related]
12. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
13. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. Chen H; Dou Q; Yu L; Qin J; Heng PA Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774 [TBL] [Abstract][Full Text] [Related]
14. Deep learning for standardized, MRI-based quantification of subcutaneous and subfascial tissue volume for patients with lipedema and lymphedema. Nowak S; Henkel A; Theis M; Luetkens J; Geiger S; Sprinkart AM; Pieper CC; Attenberger UI Eur Radiol; 2023 Feb; 33(2):884-892. PubMed ID: 35976393 [TBL] [Abstract][Full Text] [Related]
15. A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Zhang Y; Wu J; Liu Y; Chen Y; Chen W; Wu EX; Li C; Tang X Med Image Anal; 2021 Feb; 68():101884. PubMed ID: 33246228 [TBL] [Abstract][Full Text] [Related]
16. HGM-cNet: Integrating hippocampal gray matter probability map into a cascaded deep learning framework improves hippocampus segmentation. Zheng Q; Liu B; Gao Y; Bai L; Cheng Y; Li H Eur J Radiol; 2023 May; 162():110771. PubMed ID: 36948058 [TBL] [Abstract][Full Text] [Related]
17. Convolutional Neural Network Based Frameworks for Fast Automatic Segmentation of Thalamic Nuclei from Native and Synthesized Contrast Structural MRI. Umapathy L; Keerthivasan MB; Zahr NM; Bilgin A; Saranathan M Neuroinformatics; 2022 Jul; 20(3):651-664. PubMed ID: 34626333 [TBL] [Abstract][Full Text] [Related]
18. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. Naceur MB; Saouli R; Akil M; Kachouri R Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717 [TBL] [Abstract][Full Text] [Related]
19. Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning. Ataloglou D; Dimou A; Zarpalas D; Daras P Neuroinformatics; 2019 Oct; 17(4):563-582. PubMed ID: 30877605 [TBL] [Abstract][Full Text] [Related]
20. Improving brain atrophy quantification with deep learning from automated labels using tissue similarity priors. Clèrigues A; Valverde S; Oliver A; Lladó X; Comput Biol Med; 2024 Sep; 179():108811. PubMed ID: 38991315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]