These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 36207489)

  • 1. Recent progress in atomistic modeling of light-harvesting complexes: a mini review.
    Maity S; Kleinekathöfer U
    Photosynth Res; 2023 Apr; 156(1):147-162. PubMed ID: 36207489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent atomistic simulations of the CP29 light-harvesting complex.
    Maity S; Sarngadharan P; Daskalakis V; Kleinekathöfer U
    J Chem Phys; 2021 Aug; 155(5):055103. PubMed ID: 34364345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545.
    Aghtar M; Kleinekathöfer U; Curutchet C; Mennucci B
    J Phys Chem B; 2017 Feb; 121(6):1330-1339. PubMed ID: 28112938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II.
    Jurinovich S; Viani L; Prandi IG; Renger T; Mennucci B
    Phys Chem Chem Phys; 2015 Jun; 17(22):14405-16. PubMed ID: 25872495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open quantum system parameters for light harvesting complexes from molecular dynamics.
    Wang X; Ritschel G; Wüster S; Eisfeld A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25629-41. PubMed ID: 26372495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex.
    Maity S; Bold BM; Prajapati JD; Sokolov M; Kubař T; Elstner M; Kleinekathöfer U
    J Phys Chem Lett; 2020 Oct; 11(20):8660-8667. PubMed ID: 32991176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Modeling of Exciton-Bath Hamiltonians for Light Harvesting 2 and Light Harvesting 3 Complexes of Purple Photosynthetic Bacteria at Room Temperature.
    Montemayor D; Rivera E; Jang SJ
    J Phys Chem B; 2018 Apr; 122(14):3815-3825. PubMed ID: 29533664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex.
    Olbrich C; Jansen TL; Liebers J; Aghtar M; Strümpfer J; Schulten K; Knoester J; Kleinekathöfer U
    J Phys Chem B; 2011 Jul; 115(26):8609-21. PubMed ID: 21635010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description.
    Sláma V; Cupellini L; Mennucci B
    Phys Chem Chem Phys; 2020 Aug; 22(29):16783-16795. PubMed ID: 32662461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QM/MM modeling of environmental effects on electronic transitions of the FMO complex.
    Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y
    J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex.
    Sarngadharan P; Holtkamp Y; Kleinekathöfer U
    J Phys Chem B; 2024 May; 128(21):5201-5217. PubMed ID: 38756003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale QM/MM molecular dynamics simulations of the trimeric major light-harvesting complex II.
    Maity S; Daskalakis V; Elstner M; Kleinekathöfer U
    Phys Chem Chem Phys; 2021 Mar; 23(12):7407-7417. PubMed ID: 33876100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton transport in the PE545 complex: insight from atomistic QM/MM-based quantum master equations and elastic network models.
    Pouyandeh S; Iubini S; Jurinovich S; Omar Y; Mennucci B; Piazza F
    Phys Biol; 2017 Nov; 14(6):066001. PubMed ID: 28976354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Models for Biological Light-Harvesting: Phycobiliprotein Complexes from Cryptophyte Algae.
    Lee MK; Bravaya KB; Coker DF
    J Am Chem Soc; 2017 Jun; 139(23):7803-7814. PubMed ID: 28521106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemical elucidation of a sevenfold symmetric bacterial antenna complex.
    Cupellini L; Qian P; Nguyen-Phan TC; Gardiner AT; Cogdell RJ
    Photosynth Res; 2023 Apr; 156(1):75-87. PubMed ID: 35672557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral densities and absorption spectra of the core antenna complex CP43 from photosystem II.
    Sarngadharan P; Maity S; Kleinekathöfer U
    J Chem Phys; 2022 Jun; 156(21):215101. PubMed ID: 35676138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.
    Rosnik AM; Curutchet C
    J Chem Theory Comput; 2015 Dec; 11(12):5826-37. PubMed ID: 26610205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent atomistic view on the electronic relaxation in light-harvesting system II.
    Olbrich C; Kleinekathöfer U
    J Phys Chem B; 2010 Sep; 114(38):12427-37. PubMed ID: 20809619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding photosynthetic light-harvesting: a bottom up theoretical approach.
    Renger T; Müh F
    Phys Chem Chem Phys; 2013 Mar; 15(10):3348-71. PubMed ID: 23361062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Arrangement Effects on the Exciton Dynamics in the PE555 Complex.
    Chandrasekaran S; Pothula KR; Kleinekathöfer U
    J Phys Chem B; 2017 Apr; 121(15):3228-3236. PubMed ID: 27600626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.