These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36207489)

  • 21. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex.
    Hu Z; Liu Z; Sun X
    J Phys Chem B; 2022 Nov; 126(45):9271-9287. PubMed ID: 36327977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC.
    Kholod Y; DeFilippo M; Reed B; Valdez D; Gillan G; Kosenkov D
    J Comput Chem; 2018 Mar; 39(8):438-449. PubMed ID: 29243269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation.
    Curutchet C; Novoderezhkin VI; Kongsted J; Muñoz-Losa A; van Grondelle R; Scholes GD; Mennucci B
    J Phys Chem B; 2013 Apr; 117(16):4263-73. PubMed ID: 22992117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carotenoids and light-harvesting: from DFT/MRCI to the Tamm-Dancoff approximation.
    Andreussi O; Knecht S; Marian CM; Kongsted J; Mennucci B
    J Chem Theory Comput; 2015 Feb; 11(2):655-66. PubMed ID: 26579601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex.
    Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV
    J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence.
    Cupellini L; Jurinovich S; Campetella M; Caprasecca S; Guido CA; Kelly SM; Gardiner AT; Cogdell R; Mennucci B
    J Phys Chem B; 2016 Nov; 120(44):11348-11359. PubMed ID: 27791372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling of Transient Absorption Spectra in Exciton-Charge-Transfer Systems.
    Kramer T; Rodríguez M; Zelinskyy Y
    J Phys Chem B; 2017 Jan; 121(3):463-470. PubMed ID: 28001423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quest for spatially correlated fluctuations in the FMO light-harvesting complex.
    Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U
    J Phys Chem B; 2011 Feb; 115(4):758-64. PubMed ID: 21142050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study.
    Damjanović A; Kosztin I; Kleinekathöfer U; Schulten K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031919. PubMed ID: 11909121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid QM/MM study of FMO complex with polarized protein-specific charge.
    Jia X; Mei Y; Zhang JZ; Mo Y
    Sci Rep; 2015 Nov; 5():17096. PubMed ID: 26611739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations.
    Valleau S; Eisfeld A; Aspuru-Guzik A
    J Chem Phys; 2012 Dec; 137(22):224103. PubMed ID: 23248983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First-principles calculation of electronic spectra of light-harvesting complex II.
    König C; Neugebauer J
    Phys Chem Chem Phys; 2011 Jun; 13(22):10475-90. PubMed ID: 21369568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling the role of thermal fluctuations on the exciton structure of the cryptophyte PC612 and PC645 photosynthetic antenna complexes.
    Ozaydin B; Curutchet C
    Front Mol Biosci; 2023; 10():1268278. PubMed ID: 37790875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation.
    Cupellini L; Bondanza M; Nottoli M; Mennucci B
    Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148049. PubMed ID: 31386831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fast method for electronic couplings in embedded multichromophoric systems.
    Cignoni E; Cupellini L; Mennucci B
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35552268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards the description of charge transfer states in solubilised LHCII using subsystem DFT.
    Sen S; Visscher L
    Photosynth Res; 2023 Apr; 156(1):39-57. PubMed ID: 35988131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An efficient protocol for excited states of large biochromophores.
    Feighan O; Manby FR; Bourne-Worster S
    J Chem Phys; 2023 Jan; 158(2):024107. PubMed ID: 36641400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids.
    Prandi IG; Viani L; Andreussi O; Mennucci B
    J Comput Chem; 2016 Apr; 37(11):981-91. PubMed ID: 26748488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calculation of chromophore excited state energy shifts in response to molecular dynamics of pigment-protein complexes.
    Vassiliev S; Mahboob A; Bruce D
    Photosynth Res; 2011 Oct; 110(1):25-38. PubMed ID: 21964859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling.
    Cardoso Ramos F; Nottoli M; Cupellini L; Mennucci B
    Chem Sci; 2019 Nov; 10(42):9650-9662. PubMed ID: 32055335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.