These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36207784)

  • 1. The active Fe chelator proline-2'-deoxymugineic acid enhances peanut yield by improving soil Fe availability and plant Fe status.
    Wang T; Wang N; Lu Q; Lang S; Wang K; Niu L; Suzuki M; Zuo Y
    Plant Cell Environ; 2023 Jan; 46(1):239-250. PubMed ID: 36207784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil.
    Xiong H; Kakei Y; Kobayashi T; Guo X; Nakazono M; Takahashi H; Nakanishi H; Shen H; Zhang F; Nishizawa NK; Zuo Y
    Plant Cell Environ; 2013 Oct; 36(10):1888-902. PubMed ID: 23496756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics in the rhizosphere and iron-uptake gene expression in peanut induced by intercropping with maize: role in improving iron nutrition in peanut.
    Guo X; Xiong H; Shen H; Qiu W; Ji C; Zhang Z; Zuo Y
    Plant Physiol Biochem; 2014 Mar; 76():36-43. PubMed ID: 24462997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil.
    Zuo Y; Ren L; Zhang F; Jiang RF
    Plant Physiol Biochem; 2007 May; 45(5):357-64. PubMed ID: 17468004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter.
    Yamagata A; Murata Y; Namba K; Terada T; Fukai S; Shirouzu M
    Nat Commun; 2022 Nov; 13(1):7180. PubMed ID: 36424382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a mugineic acid family phytosiderophore analog as an iron fertilizer.
    Suzuki M; Urabe A; Sasaki S; Tsugawa R; Nishio S; Mukaiyama H; Murata Y; Masuda H; Aung MS; Mera A; Takeuchi M; Fukushima K; Kanaki M; Kobayashi K; Chiba Y; Shrestha BB; Nakanishi H; Watanabe T; Nakayama A; Fujino H; Kobayashi T; Tanino K; Nishizawa NK; Namba K
    Nat Commun; 2021 Mar; 12(1):1558. PubMed ID: 33692352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AhDMT1, a Fe(2+) transporter, is involved in improving iron nutrition and N2 fixation in nodules of peanut intercropped with maize in calcareous soils.
    Shen H; Xiong H; Guo X; Wang P; Duan P; Zhang L; Zhang F; Zuo Y
    Planta; 2014 May; 239(5):1065-77. PubMed ID: 24519544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.
    Xiong H; Guo X; Kobayashi T; Kakei Y; Nakanishi H; Nozoye T; Zhang L; Shen H; Qiu W; Nishizawa NK; Zuo Y
    Plant Physiol Biochem; 2014 Jul; 80():83-9. PubMed ID: 24727792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytosiderophores revisited: 2'-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings.
    Araki R; Namba K; Murata Y; Murata J
    Plant Signal Behav; 2015; 10(6):e1031940. PubMed ID: 26023724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots.
    Inal A; Gunes A; Zhang F; Cakmak I
    Plant Physiol Biochem; 2007 May; 45(5):350-6. PubMed ID: 17467283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Iron Acquisition in Rice by the Mugineic Acid Synthase Gene With Ferric Iron Reductase Gene and
    Masuda H; Aung MS; Kobayashi T; Hamada T; Nishizawa NK
    Front Plant Sci; 2019; 10():1179. PubMed ID: 31681346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil.
    Liu D; Yang Q; Ge K; Hu X; Qi G; Du B; Liu K; Ding Y
    Braz J Microbiol; 2017; 48(4):656-670. PubMed ID: 28645648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil.
    Inal A; Gunes A
    J Plant Physiol; 2008; 165(5):490-503. PubMed ID: 17698244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).
    Rui M; Ma C; Hao Y; Guo J; Rui Y; Tang X; Zhao Q; Fan X; Zhang Z; Hou T; Zhu S
    Front Plant Sci; 2016; 7():815. PubMed ID: 27375665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of [13C4]-labeled 2'-deoxymugineic acid.
    Walter MR; Artner D; Stanetty C
    J Labelled Comp Radiopharm; 2014 Nov; 57(13):710-4. PubMed ID: 25385205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptomic analysis of the roots of intercropped peanut and maize reveals novel insights into peanut iron nutrition.
    Dai J; Qiu W; Wang N; Nakanishi H; Zuo Y
    Plant Physiol Biochem; 2018 Jun; 127():516-524. PubMed ID: 29715682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
    Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK
    PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research advances in iron and zinc transfer from soil to plant in intercropping systems].
    Xia HY; Xue YF; Meng WW; Yu LM; Liu LY; Zhang Z
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1263-70. PubMed ID: 26259472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2'-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions.
    Araki R; Kousaka K; Namba K; Murata Y; Murata J
    Plant J; 2015 Jan; 81(2):233-46. PubMed ID: 25393516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.