These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 36208178)
1. Computational methods to explore chromatin state dynamics. Orouji E; Raman AT Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208178 [TBL] [Abstract][Full Text] [Related]
2. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining. Park SH; Lee SM; Kim YJ; Kim S BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934 [TBL] [Abstract][Full Text] [Related]
3. Combinatorial epigenetic patterns as quantitative predictors of chromatin biology. Cieślik M; Bekiranov S BMC Genomics; 2014 Jan; 15():76. PubMed ID: 24472558 [TBL] [Abstract][Full Text] [Related]
4. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817 [TBL] [Abstract][Full Text] [Related]
5. Finding combinatorial histone code by semi-supervised biclustering. Teng L; Tan K BMC Genomics; 2012 Jul; 13():301. PubMed ID: 22759587 [TBL] [Abstract][Full Text] [Related]
6. Interactive analysis of single-cell epigenomic landscapes with ChromSCape. Prompsy P; Kirchmeier P; Marsolier J; Deloger M; Servant N; Vallot C Nat Commun; 2020 Nov; 11(1):5702. PubMed ID: 33177523 [TBL] [Abstract][Full Text] [Related]
7. Improved simultaneous mapping of epigenetic features and 3D chromatin structure via ViCAR. Flynn SM; Dhir S; Herka K; Doyle C; Melidis L; Simeone A; Hui WWI; Araujo Tavares RC; Schoenfelder S; Tannahill D; Balasubramanian S Genome Biol; 2024 Sep; 25(1):237. PubMed ID: 39227991 [TBL] [Abstract][Full Text] [Related]
8. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Carter B; Ku WL; Kang JY; Hu G; Perrie J; Tang Q; Zhao K Nat Commun; 2019 Aug; 10(1):3747. PubMed ID: 31431618 [TBL] [Abstract][Full Text] [Related]
9. ChromBiSim: Interactive chromatin biclustering using a simple approach. Noureen N; Zohaib HM; Qadir MA; Fazal S Genomics; 2017 Oct; 109(5-6):353-361. PubMed ID: 28579515 [TBL] [Abstract][Full Text] [Related]
10. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states. Li WV; Razaee ZS; Li JJ BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822 [TBL] [Abstract][Full Text] [Related]
11. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures. Girgis HZ; Velasco A; Reyes ZE BMC Bioinformatics; 2018 Sep; 19(1):310. PubMed ID: 30176808 [TBL] [Abstract][Full Text] [Related]
12. A computational approach for the functional classification of the epigenome. Gandolfi F; Tramontano A Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787 [TBL] [Abstract][Full Text] [Related]
13. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Zhang B; Srivastava A; Mimitou E; Stuart T; Raimondi I; Hao Y; Smibert P; Satija R Nat Biotechnol; 2022 Aug; 40(8):1220-1230. PubMed ID: 35332340 [TBL] [Abstract][Full Text] [Related]
14. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions. Zheng D; Trynda J; Sun Z; Li Z BMC Genomics; 2019 Jul; 20(1):541. PubMed ID: 31266464 [TBL] [Abstract][Full Text] [Related]
15. DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. Sharifi-Zarchi A; Gerovska D; Adachi K; Totonchi M; Pezeshk H; Taft RJ; Schöler HR; Chitsaz H; Sadeghi M; Baharvand H; Araúzo-Bravo MJ BMC Genomics; 2017 Dec; 18(1):964. PubMed ID: 29233090 [TBL] [Abstract][Full Text] [Related]
16. Prediction of regulatory elements in mammalian genomes using chromatin signatures. Won KJ; Chepelev I; Ren B; Wang W BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206 [TBL] [Abstract][Full Text] [Related]
18. Mapping chromatin accessibility and active regulatory elements reveals pathological mechanisms in human gliomas. Stępniak K; Machnicka MA; Mieczkowski J; Macioszek A; Wojtaś B; Gielniewski B; Poleszak K; Perycz M; Król SK; Guzik R; Dąbrowski MJ; Dramiński M; Jardanowska M; Grabowicz I; Dziedzic A; Kranas H; Sienkiewicz K; Diamanti K; Kotulska K; Grajkowska W; Roszkowski M; Czernicki T; Marchel A; Komorowski J; Kaminska B; Wilczyński B Nat Commun; 2021 Jun; 12(1):3621. PubMed ID: 34131149 [TBL] [Abstract][Full Text] [Related]
19. Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state. Mauser R; Kungulovski G; Keup C; Reinhardt R; Jeltsch A Epigenetics Chromatin; 2017 Sep; 10(1):45. PubMed ID: 28946896 [TBL] [Abstract][Full Text] [Related]
20. An Integrated Platform for Genome-wide Mapping of Chromatin States Using High-throughput ChIP-sequencing in Tumor Tissues. Terranova C; Tang M; Orouji E; Maitituoheti M; Raman A; Amin S; Liu Z; Rai K J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]