These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36208292)

  • 1. Uncovering Pseudogenes and Intergenic Protein-coding Sequences in TriTryps' Genomes.
    Abrahim M; Machado E; Alvarez-Valín F; de Miranda AB; Catanho M
    Genome Biol Evol; 2022 Oct; 14(10):. PubMed ID: 36208292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of tubulin gene arrays in Trypanosomatid parasites: genomic restructuring in Leishmania.
    Jackson AP; Vaughan S; Gull K
    BMC Genomics; 2006 Oct; 7():261. PubMed ID: 17044946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites.
    Padilla-Mejía NE; Florencio-Martínez LE; Figueroa-Angulo EE; Manning-Cela RG; Hernández-Rivas R; Myler PJ; Martínez-Calvillo S
    BMC Genomics; 2009 May; 10():232. PubMed ID: 19450263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biology of kinetoplastid parasites: insights and challenges from genomics and post-genomics.
    Gull K
    Int J Parasitol; 2001 May; 31(5-6):443-52. PubMed ID: 11334928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis of dinucleotide repeats in Tritryps.
    Duhagon MA; Smircich P; Forteza D; Naya H; Williams N; Garat B
    Gene; 2011 Nov; 487(1):29-37. PubMed ID: 21824509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative analysis of trypanosomatid SNARE proteins.
    Murungi E; Barlow LD; Venkatesh D; Adung'a VO; Dacks JB; Field MC; Christoffels A
    Parasitol Int; 2014 Apr; 63(2):341-8. PubMed ID: 24269876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements.
    Bringaud F; Ghedin E; Blandin G; Bartholomeu DC; Caler E; Levin MJ; Baltz T; El-Sayed NM
    Mol Biochem Parasitol; 2006 Feb; 145(2):158-70. PubMed ID: 16257065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression in trypanosomatid parasites.
    Martínez-Calvillo S; Vizuet-de-Rueda JC; Florencio-Martínez LE; Manning-Cela RG; Figueroa-Angulo EE
    J Biomed Biotechnol; 2010; 2010():525241. PubMed ID: 20169133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the NANOG pseudogene family in the human and chimpanzee genomes.
    Fairbanks DJ; Maughan PJ
    BMC Evol Biol; 2006 Feb; 6():12. PubMed ID: 16469101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide computational identification of functional RNA elements in Trypanosoma brucei.
    Mao Y; Najafabadi HS; Salavati R
    BMC Genomics; 2009 Aug; 10():355. PubMed ID: 19653906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes.
    Andersson JO; Andersson SG
    Mol Biol Evol; 2001 May; 18(5):829-39. PubMed ID: 11319266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Caenorhabditis mitochondrial genome pseudogenes and Caenorhabditis briggsae natural isolates.
    Raboin MJ; Timko AF; Howe DK; Félix MA; Denver DR
    Mol Biol Evol; 2010 May; 27(5):1087-96. PubMed ID: 20026478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids.
    Reis-Cunha JL; Valdivia HO; Bartholomeu DC
    Curr Genomics; 2018 Feb; 19(2):87-97. PubMed ID: 29491737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shedding light on lipid metabolism in Kinetoplastida: A phylogenetic analysis of phospholipase D protein homologs.
    Plonski NM; Bissoni B; Arachchilage MH; Romstedt K; Kooijman EE; Piontkivska H
    Gene; 2018 May; 656():95-105. PubMed ID: 29501621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence.
    Bradwell KR; Koparde VN; Matveyev AV; Serrano MG; Alves JMP; Parikh H; Huang B; Lee V; Espinosa-Alvarez O; Ortiz PA; Costa-Martins AG; Teixeira MMG; Buck GA
    BMC Genomics; 2018 Oct; 19(1):770. PubMed ID: 30355302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-like traits associated with metabolism of Trypanosoma parasites.
    Hannaert V; Saavedra E; Duffieux F; Szikora JP; Rigden DJ; Michels PA; Opperdoes FR
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):1067-71. PubMed ID: 12552132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic DNA curvature in trypanosomes.
    Smircich P; El-Sayed NM; Garat B
    BMC Res Notes; 2017 Nov; 10(1):585. PubMed ID: 29121981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.