These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36208554)
1. Impacts of climate change on metal leaching and partitioning for submarine mine tailings disposal. Pedersen KB; Lejon T; Jensen PE; Ottosen LM; Frantzen M; Evenset A Mar Pollut Bull; 2022 Nov; 184():114197. PubMed ID: 36208554 [TBL] [Abstract][Full Text] [Related]
2. The influence of Magnafloc10 on the acidic, alkaline, and electrodialytic desorption of metals from mine tailings. Pedersen KB; Reinardy HC; Jensen PE; Ottosen LM; Junttila J; Frantzen M J Environ Manage; 2018 Oct; 224():130-139. PubMed ID: 30036807 [TBL] [Abstract][Full Text] [Related]
3. Long-term dispersion and availability of metals from submarine mine tailing disposal in a fjord in Arctic Norway. Pedersen KB; Jensen PE; Sternal B; Ottosen LM; Henning MV; Kudahl MM; Junttila J; Skirbekk K; Frantzen M Environ Sci Pollut Res Int; 2018 Nov; 25(33):32901-32912. PubMed ID: 28550634 [TBL] [Abstract][Full Text] [Related]
4. The impact of submarine copper mine tailing disposal from the 1970s on Repparfjorden, northern Norway. Sternal B; Junttila J; Skirbekk K; Forwick M; Carroll J; Pedersen KB Mar Pollut Bull; 2017 Jul; 120(1-2):136-153. PubMed ID: 28502452 [TBL] [Abstract][Full Text] [Related]
5. Lability of toxic elements in Submarine Tailings Disposal: The relationship between metal fractionation and metal uptake by sandworms (Alitta virens). Simonsen AMT; Pedersen KB; Jensen PE; Elberling B; Bach L Sci Total Environ; 2019 Dec; 696():133903. PubMed ID: 31454604 [TBL] [Abstract][Full Text] [Related]
6. Temperature-driven variation in the removal of heavy metals from contaminated tailings leaching in northern Norway. Fu S; Lu J Environ Monit Assess; 2019 Jan; 191(2):123. PubMed ID: 30706147 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of metal mobility from copper mine tailings in northern Chile. Lam EJ; Gálvez ME; Cánovas M; Montofré IL; Rivero D; Faz A Environ Sci Pollut Res Int; 2016 Jun; 23(12):11901-15. PubMed ID: 26957432 [TBL] [Abstract][Full Text] [Related]
8. Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints. Conesa HM; Schulin R; Nowack B Environ Sci Pollut Res Int; 2010 Mar; 17(3):657-64. PubMed ID: 19816728 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions. Pinto PX; Al-Abed SR; Holder C; Reisman DJ J Environ Manage; 2014 Jul; 140():135-44. PubMed ID: 24747936 [TBL] [Abstract][Full Text] [Related]
10. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Wang P; Sun Z; Hu Y; Cheng H Sci Total Environ; 2019 Dec; 695():133893. PubMed ID: 31756844 [TBL] [Abstract][Full Text] [Related]
11. Benthic community status and mobilization of Ni, Cu and Co at abandoned sea deposits for mine tailings in SW Norway. Schaanning MT; Trannum HC; Øxnevad S; Ndungu K Mar Pollut Bull; 2019 Apr; 141():318-331. PubMed ID: 30955740 [TBL] [Abstract][Full Text] [Related]
12. Geochemical stability of potentially toxic elements in porphyry copper-mine tailings from Chile as linked to ecological and human health risks assessment. Rubinos DA; Jerez Ó; Forghani G; Edraki M; Kelm U Environ Sci Pollut Res Int; 2021 Nov; 28(41):57499-57529. PubMed ID: 34089446 [TBL] [Abstract][Full Text] [Related]
13. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil. Henne A; Craw D; Gagen EJ; Southam G Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671 [TBL] [Abstract][Full Text] [Related]
14. Biogeochemical impact of historical submarine mine tailings on benthic ecosystems in the Repparfjord (Northern Norway). Hoff M; Argentino C; Huljek L; Fiket Ž; Mun Y; Angeles IB; Palinkas SS; Panieri G Sci Total Environ; 2024 May; 924():171468. PubMed ID: 38460693 [TBL] [Abstract][Full Text] [Related]
15. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil. Sun R; Gao Y; Yang Y Chemosphere; 2022 Mar; 291(Pt 1):132792. PubMed ID: 34748803 [TBL] [Abstract][Full Text] [Related]
16. Performance of waste-based amendments to reduce metal release from mine tailings: One-year leaching behaviour. Rodríguez L; Gómez R; Sánchez V; Villaseñor J; Alonso-Azcárate J J Environ Manage; 2018 Mar; 209():1-8. PubMed ID: 29274515 [TBL] [Abstract][Full Text] [Related]
17. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Porcal P; Koprivnjak JF; Molot LA; Dillon PJ Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191 [TBL] [Abstract][Full Text] [Related]
18. Accelerated weathering of biosolid-amended copper mine tailings. Pond AP; White SA; Milczarek M; Thompson TL J Environ Qual; 2005; 34(4):1293-301. PubMed ID: 15998851 [TBL] [Abstract][Full Text] [Related]
19. Evaluation on leachability of heavy metals from tailings: risk factor identification and cumulative influence. Zhang F; Li C; Shi Y; Meng L; Zan F; Wu X; Wang L; Sheng A; Crittenden JC; Chen J Environ Sci Pollut Res Int; 2023 May; 30(23):64565-64575. PubMed ID: 37072593 [TBL] [Abstract][Full Text] [Related]
20. Vertical distribution and mobility of arsenic and heavy metals in and around mine tailings of an abandoned mine. Kim MJ; Jung Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(1):203-22. PubMed ID: 15030152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]