These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36208604)

  • 1. Microparticle Brownian motion near an air-water interface governed by direction-dependent boundary conditions.
    Villa S; Blanc C; Daddi-Moussa-Ider A; Stocco A; Nobili M
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):917-927. PubMed ID: 36208604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistable interaction between a spherical Brownian particle and an air-water interface.
    Villa S; Stocco A; Blanc C; Nobili M
    Soft Matter; 2020 Jan; 16(4):960-969. PubMed ID: 31845955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rotational diffusion of partially wetted colloids at fluid interfaces.
    Stocco A; Chollet B; Wang X; Blanc C; Nobili M
    J Colloid Interface Sci; 2019 Apr; 542():363-369. PubMed ID: 30769259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of prolate spheroids in the vicinity of an air-water interface.
    Villa S; Larobina D; Stocco A; Blanc C; Villone MM; D'Avino G; Nobili M
    Soft Matter; 2023 Apr; 19(14):2646-2653. PubMed ID: 36967649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband boundary effects on Brownian motion.
    Mo J; Simha A; Raizen MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062106. PubMed ID: 26764631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.
    Hahn MW; O'Meliae CR
    Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D dynamics of bacteria wall entrapment at a water-air interface.
    Bianchi S; Saglimbeni F; Frangipane G; Dell'Arciprete D; Di Leonardo R
    Soft Matter; 2019 Apr; 15(16):3397-3406. PubMed ID: 30933209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of interfaces on the nearby Brownian motion.
    Huang K; Szlufarska I
    Nat Commun; 2015 Oct; 6():8558. PubMed ID: 26438034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian motion as a new probe of wettability.
    Mo J; Simha A; Raizen MG
    J Chem Phys; 2017 Apr; 146(13):134707. PubMed ID: 28390354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian diffusion of a partially wetted colloid.
    Boniello G; Blanc C; Fedorenko D; Medfai M; Mbarek NB; In M; Gross M; Stocco A; Nobili M
    Nat Mater; 2015 Sep; 14(9):908-11. PubMed ID: 26147846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface.
    Dani A; Yeganeh M; Maldarelli C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):931-945. PubMed ID: 36037716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A colloid model system for interfacial sorption kinetics.
    Salipante PF; Hudson SD
    Langmuir; 2015 Mar; 31(11):3368-76. PubMed ID: 25714416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-sectional tracking of particle motion in evaporating drops: flow fields and interfacial accumulation.
    Trantum JR; Eagleton ZE; Patil CA; Tucker-Schwartz JM; Baglia ML; Skala MC; Haselton FR
    Langmuir; 2013 May; 29(21):6221-31. PubMed ID: 23611508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of slip boundary condition on the design of nanoparticle focusing lenses.
    Cho DG; Na JG; Choi JB; Kim YJ; Kim T
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3741-8. PubMed ID: 19051931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear-induced reversibility of 2D colloidal suspensions in the presence of minimal thermal noise.
    Farhadi S; Arratia PE
    Soft Matter; 2017 Jun; 13(23):4278-4284. PubMed ID: 28428999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian motion near an elastic cell membrane: A theoretical study.
    Daddi-Moussa-Ider A; Gekle S
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):19. PubMed ID: 29404712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memoryless control of boundary concentrations of diffusing particles.
    Singer A; Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061106. PubMed ID: 15697340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.