These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 36208684)
1. Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia. Hege Hurrish K; Qiao X; Li X; Su Y; Carter J; Ma J; Kalpage HA; Hüttemann M; Edwards H; Wang G; Kim S; Dombkowski A; Bao X; Li J; Taub JW; Ge Y Biochem Pharmacol; 2022 Nov; 205():115283. PubMed ID: 36208684 [TBL] [Abstract][Full Text] [Related]
2. Panobinostat sensitizes AraC-resistant AML cells to the combination of azacitidine and venetoclax. Zhao J; Wu S; Wang D; Edwards H; Thibodeau J; Kim S; Stemmer P; Wang G; Jin J; Savasan S; Taub JW; Ge Y Biochem Pharmacol; 2024 Oct; 228():116065. PubMed ID: 38373594 [TBL] [Abstract][Full Text] [Related]
3. Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis in vitro. Hurrish KH; Su Y; Patel S; Ramage CL; Zhao J; Temby BR; Carter JL; Edwards H; Buck SA; Wiley SE; Hüttemann M; Polin L; Kushner J; Dzinic SH; White K; Bao X; Li J; Yang J; Boerner J; Hou Z; Al-Atrash G; Konoplev SN; Busquets J; Tiziani S; Matherly LH; Taub JW; Konopleva M; Ge Y; Baran N Biochem Pharmacol; 2024 Feb; 220():115981. PubMed ID: 38081370 [TBL] [Abstract][Full Text] [Related]
4. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine. Buettner R; Nguyen LXT; Morales C; Chen MH; Wu X; Chen LS; Hoang DH; Hernandez Vargas S; Pullarkat V; Gandhi V; Marcucci G; Rosen ST J Hematol Oncol; 2021 Apr; 14(1):70. PubMed ID: 33902674 [TBL] [Abstract][Full Text] [Related]
5. The HDAC and PI3K dual inhibitor CUDC-907 synergistically enhances the antileukemic activity of venetoclax in preclinical models of acute myeloid leukemia. Li X; Su Y; Hege K; Madlambayan G; Edwards H; Knight T; Polin L; Kushner J; Dzinic SH; White K; Yang J; Miller R; Wang G; Zhao L; Wang Y; Lin H; Taub JW; Ge Y Haematologica; 2021 May; 106(5):1262-1277. PubMed ID: 32165486 [TBL] [Abstract][Full Text] [Related]
7. Targeting EZH2 Promotes Chemosensitivity of BCL-2 Inhibitor through Suppressing PI3K and c-KIT Signaling in Acute Myeloid Leukemia. Yang C; Gu Y; Ge Z; Song C Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232694 [TBL] [Abstract][Full Text] [Related]
8. NL101 synergizes with the BCL-2 inhibitor venetoclax through PI3K-dependent suppression of c-Myc in acute myeloid leukaemia. Lu Y; Jiang X; Li Y; Li F; Zhao M; Lin Y; Jin L; Zhuang H; Li S; Ye P; Pei R; Jin J; Jiang L J Transl Med; 2024 Sep; 22(1):867. PubMed ID: 39334157 [TBL] [Abstract][Full Text] [Related]
9. Cotargeting BCL-2 and PI3K Induces BAX-Dependent Mitochondrial Apoptosis in AML Cells. Rahmani M; Nkwocha J; Hawkins E; Pei X; Parker RE; Kmieciak M; Leverson JD; Sampath D; Ferreira-Gonzalez A; Grant S Cancer Res; 2018 Jun; 78(11):3075-3086. PubMed ID: 29559471 [TBL] [Abstract][Full Text] [Related]
10. Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis. Hurrish KH; Su Y; Patel S; Ramage CL; Carter JL; Edwards H; Buck SA; Wiley SE; Hüttemann M; Polin L; Kushner J; Dzinic SH; White K; Bao X; Li J; Yang J; Boerner J; Hou Z; Al-Atrash G; Konoplev SN; Busquets J; Tiziani S; Matherly LH; Taub JW; Konopleva M; Ge Y; Baran N Res Sq; 2023 Apr; ():. PubMed ID: 37162954 [TBL] [Abstract][Full Text] [Related]
11. Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment. Chen X; Glytsou C; Zhou H; Narang S; Reyna DE; Lopez A; Sakellaropoulos T; Gong Y; Kloetgen A; Yap YS; Wang E; Gavathiotis E; Tsirigos A; Tibes R; Aifantis I Cancer Discov; 2019 Jul; 9(7):890-909. PubMed ID: 31048321 [TBL] [Abstract][Full Text] [Related]
12. Lisaftoclax in Combination with Alrizomadlin Overcomes Venetoclax Resistance in Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia: Preclinical Studies. Zhai Y; Tang Q; Fang DD; Deng J; Zhang K; Wang Q; Yin Y; Fu C; Xue SL; Li N; Zhou F; Yang D Clin Cancer Res; 2023 Jan; 29(1):183-196. PubMed ID: 36240005 [TBL] [Abstract][Full Text] [Related]
13. 225Ac-labeled CD33-targeting antibody reverses resistance to Bcl-2 inhibitor venetoclax in acute myeloid leukemia models. Garg R; Allen KJH; Dawicki W; Geoghegan EM; Ludwig DL; Dadachova E Cancer Med; 2021 Feb; 10(3):1128-1140. PubMed ID: 33347715 [TBL] [Abstract][Full Text] [Related]
14. Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Li X; Su Y; Madlambayan G; Edwards H; Polin L; Kushner J; Dzinic SH; White K; Ma J; Knight T; Wang G; Wang Y; Yang J; Taub JW; Lin H; Ge Y Haematologica; 2019 Nov; 104(11):2225-2240. PubMed ID: 30819918 [TBL] [Abstract][Full Text] [Related]
15. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism. Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471 [TBL] [Abstract][Full Text] [Related]
16. SOHO State of the Art Updates and Next Questions: Understanding and Overcoming Venetoclax Resistance in Hematologic Malignancies. Forsberg M; Konopleva M Clin Lymphoma Myeloma Leuk; 2024 Jan; 24(1):1-14. PubMed ID: 38007372 [TBL] [Abstract][Full Text] [Related]
17. Venetoclax resistance in acute lymphoblastic leukemia is characterized by increased mitochondrial activity and can be overcome by co-targeting oxidative phosphorylation. Enzenmüller S; Niedermayer A; Seyfried F; Muench V; Tews D; Rupp U; Tausch E; Groß A; Fischer-Posovszky P; Walther P; Stilgenbauer S; Kestler HA; Debatin KM; Meyer LH Cell Death Dis; 2024 Jul; 15(7):475. PubMed ID: 38961053 [TBL] [Abstract][Full Text] [Related]
18. Cytoplasmic TP53INP2 acts as an apoptosis partner in TRAIL treatment: the synergistic effect of TRAIL with venetoclax in TP53INP2-positive acute myeloid leukemia. Ren J; Huang J; Yang Z; Sun M; Yang J; Lin C; Jin F; Liu Y; Tang L; Hu J; Wei X; Chen X; Yuan Z; Yang Z; Chen Y; Zhang L J Exp Clin Cancer Res; 2024 Jun; 43(1):176. PubMed ID: 38909249 [TBL] [Abstract][Full Text] [Related]
19. Artesunate improves venetoclax plus cytarabine AML cell targeting by regulating the Noxa/Bim/Mcl-1/p-Chk1 axis. Zhang J; Wang Y; Yin C; Gong P; Zhang Z; Zhao L; Waxman S; Jing Y Cell Death Dis; 2022 Apr; 13(4):379. PubMed ID: 35443722 [TBL] [Abstract][Full Text] [Related]
20. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. Lehmann C; Friess T; Birzele F; Kiialainen A; Dangl M J Hematol Oncol; 2016 Jun; 9(1):50. PubMed ID: 27353420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]