These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 36208729)

  • 1. In vitro and ex vivo models for evaluating vaginal drug delivery systems.
    Shapiro RL; DeLong K; Zulfiqar F; Carter D; Better M; Ensign LM
    Adv Drug Deliv Rev; 2022 Dec; 191():114543. PubMed ID: 36208729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle-mediated drug delivery to treat infections in the female reproductive tract: evaluation of experimental systems and the potential for mathematical modeling.
    Sims LB; Frieboes HB; Steinbach-Rankins JM
    Int J Nanomedicine; 2018; 13():2709-2727. PubMed ID: 29760551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.
    Krogstad EA; Ramanathan R; Nhan C; Kraft JC; Blakney AK; Cao S; Ho RJY; Woodrow KA
    Biomaterials; 2017 Nov; 144():1-16. PubMed ID: 28802690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo.
    Xu Q; Ensign LM; Boylan NJ; Schön A; Gong X; Yang JC; Lamb NW; Cai S; Yu T; Freire E; Hanes J
    ACS Nano; 2015 Sep; 9(9):9217-27. PubMed ID: 26301576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaginal Drug Delivery Systems to Control Microbe-Associated Infections.
    Xie L; Li Y; Liu Y; Chai Z; Ding Y; Shi L; Wang J
    ACS Appl Bio Mater; 2023 Sep; 6(9):3504-3515. PubMed ID: 36932958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Trends and Potential Prospects in Vaginal Drug Delivery.
    Mahant S; Sharma AK; Gandhi H; Wadhwa R; Dua K; Kapoor DN
    Curr Drug Deliv; 2023; 20(6):730-751. PubMed ID: 35422213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vaginal delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth.
    Yang M; Yu T; Wang YY; Lai SK; Zeng Q; Miao B; Tang BC; Simons BW; Ensign LM; Liu G; Chan KW; Juang CY; Mert O; Wood J; Fu J; McMahon MT; Wu TC; Hung CF; Hanes J
    Adv Healthc Mater; 2014 Jul; 3(7):1044-52. PubMed ID: 24339398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravaginal gels as drug delivery systems.
    Justin-Temu M; Damian F; Kinget R; Van Den Mooter G
    J Womens Health (Larchmt); 2004 Sep; 13(7):834-44. PubMed ID: 15385078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.
    Wu N; Zhang X; Li F; Zhang T; Gan Y; Li J
    Int J Nanomedicine; 2015; 10():5383-96. PubMed ID: 26347257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-sized platforms for vaginal drug delivery.
    El-Hammadi MM; Arias JL
    Curr Pharm Des; 2015; 21(12):1633-44. PubMed ID: 25354177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mucoadhesive and thermogelling systems for vaginal drug delivery.
    Caramella CM; Rossi S; Ferrari F; Bonferoni MC; Sandri G
    Adv Drug Deliv Rev; 2015 Sep; 92():39-52. PubMed ID: 25683694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery.
    Zierden HC; Josyula A; Shapiro RL; Hsueh HT; Hanes J; Ensign LM
    Trends Mol Med; 2021 May; 27(5):436-450. PubMed ID: 33414070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake.
    Ensign LM; Hoen TE; Maisel K; Cone RA; Hanes JS
    Biomaterials; 2013 Sep; 34(28):6922-9. PubMed ID: 23769419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development.
    Wong TW; Dhanawat M; Rathbone MJ
    Expert Opin Drug Deliv; 2014 Sep; 11(9):1419-34. PubMed ID: 24960192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel ex vivo protocol using porcine vagina to assess drug permeation from mucoadhesive and colloidal pharmaceutical systems.
    Pereira MN; Reis TA; Matos BN; Cunha-Filho M; Gratieri T; Gelfuso GM
    Colloids Surf B Biointerfaces; 2017 Oct; 158():222-228. PubMed ID: 28697437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vagina as a route for systemic drug delivery.
    Hussain A; Ahsan F
    J Control Release; 2005 Mar; 103(2):301-13. PubMed ID: 15763615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches in Polymeric Nanoparticles for Vaginal Drug Delivery: A Review of the State of the Art.
    Leyva-Gómez G; Piñón-Segundo E; Mendoza-Muñoz N; Zambrano-Zaragoza ML; Mendoza-Elvira S; Quintanar-Guerrero D
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29882846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovations in bioadhesive vaginal drug delivery system.
    Bassi P; Kaur G
    Expert Opin Ther Pat; 2012 Sep; 22(9):1019-32. PubMed ID: 22860765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus.
    Ensign LM; Tang BC; Wang YY; Tse TA; Hoen T; Cone R; Hanes J
    Sci Transl Med; 2012 Jun; 4(138):138ra79. PubMed ID: 22700955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.