These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 36209182)
1. A general modeling framework for exploring the impact of individual concern and personal protection on vector-borne disease dynamics. Roosa K; Fefferman NH Parasit Vectors; 2022 Oct; 15(1):361. PubMed ID: 36209182 [TBL] [Abstract][Full Text] [Related]
2. A generic arboviral model framework for exploring trade-offs between vector control and environmental concerns. Suarez GP; Udiani O; Allan BF; Price C; Ryan SJ; Lofgren E; Coman A; Stone CM; Gallos LK; Fefferman NH J Theor Biol; 2020 Apr; 490():110161. PubMed ID: 31953137 [TBL] [Abstract][Full Text] [Related]
3. An analysis of community perceptions of mosquito-borne disease control and prevention in Sint Eustatius, Caribbean Netherlands. Leslie TE; Carson M; Coeverden EV; De Klein K; Braks M; Krumeich A Glob Health Action; 2017; 10(1):1350394. PubMed ID: 28766466 [TBL] [Abstract][Full Text] [Related]
4. How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy. Jiao J; Suarez GP; Fefferman NH PLoS Comput Biol; 2021 Jun; 17(6):e1008762. PubMed ID: 34181645 [TBL] [Abstract][Full Text] [Related]
5. Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection. Diaz JH Wilderness Environ Med; 2016 Dec; 27(4):450-457. PubMed ID: 28340908 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning to understand microgeographic determinants of the Zika vector, Aedes aegypti. Alexander J; Wilke ABB; Mantero A; Vasquez C; Petrie W; Kumar N; Beier JC PLoS One; 2022; 17(12):e0265472. PubMed ID: 36584050 [TBL] [Abstract][Full Text] [Related]
7. The use of drones for mosquito surveillance and control. Carrasco-Escobar G; Moreno M; Fornace K; Herrera-Varela M; Manrique E; Conn JE Parasit Vectors; 2022 Dec; 15(1):473. PubMed ID: 36527116 [TBL] [Abstract][Full Text] [Related]
8. Modeling Zika Vaccination Combined With Vector Interventions in DoD Populations. Burgess C; Nelis L; Huang C Mil Med; 2021 Jan; 186(Suppl 1):82-90. PubMed ID: 33499489 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of a spatial repellent for control of Morrison AC; Reiner RC; Elson WH; Astete H; Guevara C; Del Aguila C; Bazan I; Siles C; Barrera P; Kawiecki AB; Barker CM; Vasquez GM; Escobedo-Vargas K; Flores-Mendoza C; Huaman AA; Leguia M; Silva ME; Jenkins SA; Campbell WR; Abente EJ; Hontz RD; Paz-Soldan VA; Grieco JP; Lobo NF; Scott TW; Achee NL Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2118283119. PubMed ID: 35737833 [TBL] [Abstract][Full Text] [Related]
10. The 'lifecycle' of human beings: a call to explore vector-borne diseases from an ecosystem perspective. Muurlink OT; Taylor-Robinson AW Infect Dis Poverty; 2020 Apr; 9(1):37. PubMed ID: 32295629 [TBL] [Abstract][Full Text] [Related]
11. The global spread of Zika virus: is public and media concern justified in regions currently unaffected? Gyawali N; Bradbury RS; Taylor-Robinson AW Infect Dis Poverty; 2016 Apr; 5():37. PubMed ID: 27093860 [TBL] [Abstract][Full Text] [Related]
12. Zika virus in workers: Considerations for ongoing exposure prevention. Brown CK; Shugart JM Am J Ind Med; 2019 Jun; 62(6):455-459. PubMed ID: 31025402 [TBL] [Abstract][Full Text] [Related]
14. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. Bezirtzoglou C; Dekas K; Charvalos E Anaerobe; 2011 Dec; 17(6):337-40. PubMed ID: 21664978 [TBL] [Abstract][Full Text] [Related]
15. Modeling preferential attraction to infected hosts in vector-borne diseases. Thapa I; Ghersi D Front Public Health; 2023; 11():1276029. PubMed ID: 38074743 [TBL] [Abstract][Full Text] [Related]
16. A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate. Suparit P; Wiratsudakul A; Modchang C Theor Biol Med Model; 2018 Aug; 15(1):11. PubMed ID: 30064447 [TBL] [Abstract][Full Text] [Related]
17. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Segura NA; Muñoz AL; Losada-Barragán M; Torres O; Rodríguez AK; Rangel H; Bello F Pathog Dis; 2021 Sep; 79(7):. PubMed ID: 34410378 [TBL] [Abstract][Full Text] [Related]
18. Zika virus outbreak in Brazil under current and future climate. Sadeghieh T; Sargeant JM; Greer AL; Berke O; Dueymes G; Gachon P; Ogden NH; Ng V Epidemics; 2021 Dec; 37():100491. PubMed ID: 34454353 [TBL] [Abstract][Full Text] [Related]
19. Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety. Viennet E; Frentiu FD; Williams CR; Mincham G; Jansen CC; Montgomery BL; Flower RLP; Faddy HM PLoS Negl Trop Dis; 2020 Jul; 14(7):e0008438. PubMed ID: 32663213 [TBL] [Abstract][Full Text] [Related]
20. Building capacity for testing sterile insect technique against Aedes-borne diseases in the Pacific: a training workshop and launch of sterile insect technique trials against Aedes aegypti and arboviral diseases. Foley N; Fouque F; Zhong Q; Bossin H; Bouyer J; Velayudhan R; Nett R; Drexler A Infect Dis Poverty; 2024 Oct; 13(1):75. PubMed ID: 39390619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]