These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36209195)

  • 1. Application of deep learning reconstruction of ultra-low-dose abdominal CT in the diagnosis of renal calculi.
    Zhang X; Zhang G; Xu L; Bai X; Zhang J; Xu M; Yan J; Zhang D; Jin Z; Sun H
    Insights Imaging; 2022 Oct; 13(1):163. PubMed ID: 36209195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis.
    Zhang G; Zhang X; Xu L; Bai X; Jin R; Xu M; Yan J; Jin Z; Sun H
    Eur Radiol; 2022 Sep; 32(9):5954-5963. PubMed ID: 35357541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung-Optimized Deep-Learning-Based Reconstruction for Ultralow-Dose CT.
    Goto M; Nagayama Y; Sakabe D; Emoto T; Kidoh M; Oda S; Nakaura T; Taguchi N; Funama Y; Takada S; Uchimura R; Hayashi H; Hatemura M; Kawanaka K; Hirai T
    Acad Radiol; 2023 Mar; 30(3):431-440. PubMed ID: 35738988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based reconstruction can improve the image quality of low radiation dose head CT.
    Nagayama Y; Iwashita K; Maruyama N; Uetani H; Goto M; Sakabe D; Emoto T; Nakato K; Shigematsu S; Kato Y; Takada S; Kidoh M; Oda S; Nakaura T; Hatemura M; Ueda M; Mukasa A; Hirai T
    Eur Radiol; 2023 May; 33(5):3253-3265. PubMed ID: 36973431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window.
    Wang J; Sui X; Zhao R; Du H; Wang J; Wang Y; Qin R; Lu X; Ma Z; Xu Y; Jin Z; Song L; Song W
    Eur Radiol; 2024 Feb; 34(2):1053-1064. PubMed ID: 37581663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 7. Low tube voltage and deep-learning reconstruction for reducing radiation and contrast medium doses in thin-slice abdominal CT: a prospective clinical trial.
    Yoshida K; Nagayama Y; Funama Y; Ishiuchi S; Motohara T; Masuda T; Nakaura T; Ishiko T; Hirai T; Beppu T
    Eur Radiol; 2024 May; ():. PubMed ID: 38753193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation dose optimization potential of deep learning-based reconstruction for multiphase hepatic CT: A clinical and phantom study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Taguchi N; Maruyama N; Takada S; Uchimura R; Hayashi H; Kidoh M; Oda S; Nakaura T; Funama Y; Hatemura M; Hirai T
    Eur J Radiol; 2022 Jun; 151():110280. PubMed ID: 35381567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation.
    Hata A; Yanagawa M; Yoshida Y; Miyata T; Tsubamoto M; Honda O; Tomiyama N
    AJR Am J Roentgenol; 2020 Dec; 215(6):1321-1328. PubMed ID: 33052702
    [No Abstract]   [Full Text] [Related]  

  • 10. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.
    Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK
    AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501
    [No Abstract]   [Full Text] [Related]  

  • 11. Detection of urinary tract stones on submillisievert abdominopelvic CT imaging with deep-learning image reconstruction algorithm (DLIR).
    Prod'homme S; Bouzerar R; Forzini T; Delabie A; Renard C
    Abdom Radiol (NY); 2024 Jun; 49(6):1987-1995. PubMed ID: 38470506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction.
    Oostveen LJ; Smit EJ; Dekker HM; Buckens CF; Pegge SAH; de Lange F; Sechopoulos I; Prokop M
    AJR Am J Roentgenol; 2023 Mar; 220(3):381-388. PubMed ID: 36259592
    [No Abstract]   [Full Text] [Related]  

  • 13. Ultra-low-dose CT reconstructed with the artificial intelligence iterative reconstruction algorithm (AIIR) in
    Hu Y; Zheng Z; Yu H; Wang J; Yang X; Shi H
    EJNMMI Phys; 2023 Jan; 10(1):1. PubMed ID: 36592256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Quantitative Analysis of Emphysema in Ultra-high-resolution CT by Using Deep Learning Reconstruction: Comparison with Hybrid Iterative Reconstruction].
    Muramatsu S; Sato K
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(11):1163-1172. PubMed ID: 33229846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT.
    Nakamura Y; Narita K; Higaki T; Akagi M; Honda Y; Awai K
    Eur Radiol; 2021 Jul; 31(7):4700-4709. PubMed ID: 33389036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value].
    Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN
    Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531
    [No Abstract]   [Full Text] [Related]  

  • 17. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-low-dose CT lung screening with artificial intelligence iterative reconstruction: evaluation via automatic nodule-detection software.
    Yang L; Liu H; Han J; Xu S; Zhang G; Wang Q; Du Y; Yang F; Zhao X; Shi G
    Clin Radiol; 2023 Jul; 78(7):525-531. PubMed ID: 36948944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction.
    Fujita N; Yasaka K; Hatano S; Sakamoto N; Kurokawa R; Abe O
    Neuroradiology; 2024 Jul; 66(7):1105-1112. PubMed ID: 38514472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-learning reconstruction for ultra-low-dose lung CT: Volumetric measurement accuracy and reproducibility of artificial ground-glass nodules in a phantom study.
    Mikayama R; Shirasaka T; Kojima T; Sakai Y; Yabuuchi H; Kondo M; Kato T
    Br J Radiol; 2022 Feb; 95(1130):20210915. PubMed ID: 34908478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.