BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36209277)

  • 41. ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis.
    Wang L; Yang H; Zamperone A; Diolaiti D; Palmbos PL; Abel EV; Purohit V; Dolgalev I; Rhim AD; Ljungman M; Hadju CH; Halbrook CJ; Bar-Sagi D; di Magliano MP; Crawford HC; Simeone DM
    Genes Dev; 2019 Jun; 33(11-12):641-655. PubMed ID: 31048544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells.
    Bailey JM; Hendley AM; Lafaro KJ; Pruski MA; Jones NC; Alsina J; Younes M; Maitra A; McAllister F; Iacobuzio-Donahue CA; Leach SD
    Oncogene; 2016 Aug; 35(32):4282-8. PubMed ID: 26592447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zeb1 in Stromal Myofibroblasts Promotes
    Sangrador I; Molero X; Campbell F; Franch-Expósito S; Rovira-Rigau M; Samper E; Domínguez-Fraile M; Fillat C; Castells A; Vaquero EC
    Cancer Res; 2018 May; 78(10):2624-2637. PubMed ID: 29490942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive genomic profiling of extrahepatic cholangiocarcinoma reveals a long tail of therapeutic targets.
    Lee H; Wang K; Johnson A; Jones DM; Ali SM; Elvin JA; Yelensky R; Lipson D; Miller VA; Stephens PJ; Javle M; Ross JS
    J Clin Pathol; 2016 May; 69(5):403-8. PubMed ID: 26500333
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A genetically engineered mouse model developing rapid progressive pancreatic ductal adenocarcinoma.
    Yamaguchi T; Ikehara S; Nakanishi H; Ikehara Y
    J Pathol; 2014 Oct; 234(2):228-38. PubMed ID: 25042889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomic profiling, prognosis, and potential interventional targets in young and old patients with cholangiocarcinoma.
    Wang J; Shi Y; Chen J; Liu J; Zhao X; Pang J; Sun X; Tian Y; Ou Q; Xia F; Chen Y
    Cancer Biol Ther; 2023 Dec; 24(1):2223375. PubMed ID: 37337460
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia.
    Caldas C; Hahn SA; Hruban RH; Redston MS; Yeo CJ; Kern SE
    Cancer Res; 1994 Jul; 54(13):3568-73. PubMed ID: 8012983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CXCR2 signaling regulates KRAS(G¹²D)-induced autocrine growth of pancreatic cancer.
    Purohit A; Varney M; Rachagani S; Ouellette MM; Batra SK; Singh RK
    Oncotarget; 2016 Feb; 7(6):7280-96. PubMed ID: 26771140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Oncogenic
    Shimada Y; Kohno T; Ueno H; Ino Y; Hayashi H; Nakaoku T; Sakamoto Y; Kondo S; Morizane C; Shimada K; Okusaka T; Hiraoka N
    Oncologist; 2017 Feb; 22(2):158-164. PubMed ID: 28167572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ELISA-based Ki-ras gene mutation analyses in pancreatic and cholangiocarcinoma cells and tissues.
    Gabriel M; Henne-Bruns D; Kalthoff H
    Oncol Rep; 2001; 8(6):1367-70. PubMed ID: 11605068
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer.
    Kapoor A; Yao W; Ying H; Hua S; Liewen A; Wang Q; Zhong Y; Wu CJ; Sadanandam A; Hu B; Chang Q; Chu GC; Al-Khalil R; Jiang S; Xia H; Fletcher-Sananikone E; Lim C; Horwitz GI; Viale A; Pettazzoni P; Sanchez N; Wang H; Protopopov A; Zhang J; Heffernan T; Johnson RL; Chin L; Wang YA; Draetta G; DePinho RA
    Cell; 2014 Jul; 158(1):185-197. PubMed ID: 24954535
    [TBL] [Abstract][Full Text] [Related]  

  • 52. miR-802 Suppresses Acinar-to-Ductal Reprogramming During Early Pancreatitis and Pancreatic Carcinogenesis.
    Ge W; Goga A; He Y; Silva PN; Hirt CK; Herrmanns K; Guccini I; Godbersen S; Schwank G; Stoffel M
    Gastroenterology; 2022 Jan; 162(1):269-284. PubMed ID: 34547282
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Patterns of gene mutations in bile duct cancers: is it time to overcome the anatomical classification?
    Bagante F; Ruzzenente A; Conci S; Rusev BC; Simbolo M; Campagnaro T; Pawlik TM; Luchini C; Iacono C; Scarpa A; Guglielmi A
    HPB (Oxford); 2019 Dec; 21(12):1648-1655. PubMed ID: 31122820
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KRAS mutation status is associated with specific pattern of genes expression in pancreatic adenocarcinoma.
    Bittoni A; Piva F; Santoni M; Andrikou K; Conti A; Loretelli C; Mandolesi A; Lanese A; Pellei C; Scarpelli M; Principato G; Cascinu S
    Future Oncol; 2015; 11(13):1905-17. PubMed ID: 26161927
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm.
    Taki K; Ohmuraya M; Tanji E; Komatsu H; Hashimoto D; Semba K; Araki K; Kawaguchi Y; Baba H; Furukawa T
    Oncogene; 2016 May; 35(18):2407-12. PubMed ID: 26257060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting reactive oxygen species in development and progression of pancreatic cancer.
    Durand N; Storz P
    Expert Rev Anticancer Ther; 2017 Jan; 17(1):19-31. PubMed ID: 27841037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Meta-analysis on prognostic value of KRAS mutation in resected mass-forming cholangiocarcinoma.
    Procopio F; Branciforte B; Nappo G; Di Tommaso L; Lleo A; Torzilli G
    Eur J Surg Oncol; 2022 Jul; 48(7):1455-1463. PubMed ID: 35317947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer.
    Humpton TJ; Alagesan B; DeNicola GM; Lu D; Yordanov GN; Leonhardt CS; Yao MA; Alagesan P; Zaatari MN; Park Y; Skepper JN; Macleod KF; Perez-Mancera PA; Murphy MP; Evan GI; Vousden KH; Tuveson DA
    Cancer Discov; 2019 Sep; 9(9):1268-1287. PubMed ID: 31263025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genomic characterization of undifferentiated sarcomatoid carcinoma of the pancreas.
    Gkountakos A; Mafficini A; Lou E; Malleo G; Salvia R; Calicchia M; Silvestris N; Racila E; Amin K; Veronese N; Brunetti O; Antonini P; Ingravallo G; Mattiolo P; Saponaro C; Nappo F; Simbolo M; Bariani E; Lonardi S; Fassan M; Milella M; Lawlor RT; Scarpa A; Luchini C
    Hum Pathol; 2022 Oct; 128():124-133. PubMed ID: 35850360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.
    Chen NM; Singh G; Koenig A; Liou GY; Storz P; Zhang JS; Regul L; Nagarajan S; Kühnemuth B; Johnsen SA; Hebrok M; Siveke J; Billadeau DD; Ellenrieder V; Hessmann E
    Gastroenterology; 2015 May; 148(5):1024-1034.e9. PubMed ID: 25623042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.