These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36209771)
1. Fast antidepressant action of ketamine in mouse models requires normal VGLUT1 levels from prefrontal cortex neurons. Belloch FB; Cortés-Erice M; Herzog E; Zhang XM; Díaz-Perdigon T; Puerta E; Tordera RM Prog Neuropsychopharmacol Biol Psychiatry; 2023 Mar; 121():110640. PubMed ID: 36209771 [TBL] [Abstract][Full Text] [Related]
2. Vesicular glutamate transporter 1 (VGLUT1)-mediated glutamate release and membrane GluA1 activation is involved in the rapid antidepressant-like effects of scopolamine in mice. Yu H; Li M; Zhou D; Lv D; Liao Q; Lou Z; Shen M; Wang Z; Li M; Xiao X; Zhang Y; Wang C Neuropharmacology; 2018 Mar; 131():209-222. PubMed ID: 29274366 [TBL] [Abstract][Full Text] [Related]
4. Increased expression of the Vesicular Glutamate Transporter-1 (VGLUT1) in the prefrontal cortex correlates with differential vulnerability to chronic stress in various mouse strains: effects of fluoxetine and MK-801. Farley S; Dumas S; El Mestikawy S; Giros B Neuropharmacology; 2012 Jan; 62(1):503-17. PubMed ID: 21945287 [TBL] [Abstract][Full Text] [Related]
5. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Zhang JC; Yao W; Dong C; Yang C; Ren Q; Ma M; Han M; Hashimoto K Psychopharmacology (Berl); 2015 Dec; 232(23):4325-35. PubMed ID: 26337614 [TBL] [Abstract][Full Text] [Related]
6. Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Yang B; Zhang JC; Han M; Yao W; Yang C; Ren Q; Ma M; Chen QX; Hashimoto K Psychopharmacology (Berl); 2016 Oct; 233(19-20):3647-57. PubMed ID: 27488193 [TBL] [Abstract][Full Text] [Related]
7. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice. Lindholm JS; Autio H; Vesa L; Antila H; Lindemann L; Hoener MC; Skolnick P; Rantamäki T; Castrén E Neuropharmacology; 2012 Jan; 62(1):391-7. PubMed ID: 21867718 [TBL] [Abstract][Full Text] [Related]
8. Rapid and sustained restoration of astrocytic functions by ketamine in depression model mice. Ma X; Yang S; Zhang Z; Liu L; Shi W; Yang S; Li S; Cai X; Zhou Q Biochem Biophys Res Commun; 2022 Aug; 616():89-94. PubMed ID: 35653826 [TBL] [Abstract][Full Text] [Related]
9. TAK-653, an AMPA receptor potentiator with minimal agonistic activity, produces an antidepressant-like effect with a favorable safety profile in rats. Hara H; Suzuki A; Kunugi A; Tajima Y; Yamada R; Kimura H Pharmacol Biochem Behav; 2021 Dec; 211():173289. PubMed ID: 34655652 [TBL] [Abstract][Full Text] [Related]
10. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Deyama S; Duman RS Pharmacol Biochem Behav; 2020 Jan; 188():172837. PubMed ID: 31830487 [TBL] [Abstract][Full Text] [Related]
11. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Garcia-Garcia AL; Elizalde N; Matrov D; Harro J; Wojcik SM; Venzala E; Ramírez MJ; Del Rio J; Tordera RM Biol Psychiatry; 2009 Aug; 66(3):275-82. PubMed ID: 19409534 [TBL] [Abstract][Full Text] [Related]
12. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Zhou W; Wang N; Yang C; Li XM; Zhou ZQ; Yang JJ Eur Psychiatry; 2014 Sep; 29(7):419-23. PubMed ID: 24321772 [TBL] [Abstract][Full Text] [Related]
13. Reduction of BDNF Levels and Biphasic Changes in Glutamate Release in the Prefrontal Cortex Correlate with Susceptibility to Chronic Stress-Induced Anhedonia. Hu X; Zhao HL; Kurban N; Qin Y; Chen X; Cui SY; Zhang YH eNeuro; 2023 Nov; 10(11):. PubMed ID: 37989582 [TBL] [Abstract][Full Text] [Related]
14. The mood stabilizer lithium potentiates the antidepressant-like effects and ameliorates oxidative stress induced by acute ketamine in a mouse model of stress. Chiu CT; Scheuing L; Liu G; Liao HM; Linares GR; Lin D; Chuang DM Int J Neuropsychopharmacol; 2014 Dec; 18(6):. PubMed ID: 25548109 [TBL] [Abstract][Full Text] [Related]
16. Nucleocytoplasmic export of HDAC5 and SIRT2 downregulation: two epigenetic mechanisms by which antidepressants enhance synaptic plasticity markers. Muñoz-Cobo I; Erburu MM; Zwergel C; Cirilli R; Mai A; Valente S; Puerta E; Tordera RM Psychopharmacology (Berl); 2018 Oct; 235(10):2831-2846. PubMed ID: 30091005 [TBL] [Abstract][Full Text] [Related]
17. A key role of miR-132-5p in the prefrontal cortex for persistent prophylactic actions of (R)-ketamine in mice. Ma L; Wang L; Chang L; Shan J; Qu Y; Wang X; Wan X; Fujita Y; Hashimoto K Transl Psychiatry; 2022 Sep; 12(1):417. PubMed ID: 36171191 [TBL] [Abstract][Full Text] [Related]
18. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine. Deyama S; Kaneda K Neuropharmacology; 2023 Feb; 224():109335. PubMed ID: 36403852 [TBL] [Abstract][Full Text] [Related]
19. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pham TH; Gardier AM Pharmacol Ther; 2019 Jul; 199():58-90. PubMed ID: 30851296 [TBL] [Abstract][Full Text] [Related]
20. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 Fukumoto K; Fogaça MV; Liu RJ; Duman C; Kato T; Li XY; Duman RS Proc Natl Acad Sci U S A; 2019 Jan; 116(1):297-302. PubMed ID: 30559184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]