These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36209810)

  • 1. Tuning the decay of sound in a viscous metamaterial.
    Ibarias M; Doporto J; Krokhin AA; Arriaga J
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20220007. PubMed ID: 36209810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of viscous dissipation in propagation of sound in periodic layered structures.
    Shymkiv D; Krokhin A
    J Acoust Soc Am; 2024 Feb; 155(2):990-1004. PubMed ID: 38341734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-reciprocal acoustics in a viscous environment.
    Heo H; Walker E; Zubov Y; Shymkiv D; Wages D; Krokhin A; Choi TY; Neogi A
    Proc Math Phys Eng Sci; 2020 Dec; 476(2244):20200657. PubMed ID: 33408567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic Tamm states of three-dimensional solid-fluid phononic crystals.
    Korozlu N; Kaya OA; Cicek A; Ulug B
    J Acoust Soc Am; 2018 Feb; 143(2):756. PubMed ID: 29495709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Analysis of Viscous Dissipation in Microchannel Sensor Based on Phononic Crystal.
    He J; Li H; Tian Y; Zhang Q; Lu Z; Lan J
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.
    Ash BJ; Worsfold SR; Vukusic P; Nash GR
    Nat Commun; 2017 Aug; 8(1):174. PubMed ID: 28765535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological Design of Two-Dimensional Phononic Crystals Based on Genetic Algorithm.
    Wen X; Kang L; Sun X; Song T; Qi L; Cao Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Phononic Crystal Based Sensor for Characterization of Mixtures and Heterogeneous Liquids.
    Mukhin N; Kutia M; Aman A; Steinmann U; Lucklum R
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Hypersonic Bandgap Formation in Anisotropic Crystals of Dumbbell Nanoparticles.
    Kim H; Gueddida A; Wang Z; Djafari-Rouhani B; Fytas G; Furst EM
    ACS Nano; 2023 Oct; 17(19):19224-19231. PubMed ID: 37756140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals.
    Ponge MF; Croƫnne C; Vasseur JO; Bou Matar O; Hladky-Hennion AC; Dubus B
    J Acoust Soc Am; 2016 Jun; 139(6):3288. PubMed ID: 27369153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D Dynamic Directional Amplification (DDA) in Phononic Metamaterials.
    Kalderon M; Paradeisiotis A; Antoniadis I
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures.
    Frazier MJ; Hussein MI
    J Acoust Soc Am; 2015 Nov; 138(5):3169-80. PubMed ID: 26627790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bandgap characteristics of phononic crystals in steady and unsteady flows.
    Oh TS; Jeon W
    J Acoust Soc Am; 2020 Sep; 148(3):1181. PubMed ID: 33003880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustically trapped colloidal crystals that are reconfigurable in real time.
    Caleap M; Drinkwater BW
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6226-30. PubMed ID: 24706925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces.
    Jin Y; Pennec Y; Bonello B; Honarvar H; Dobrzynski L; Djafari-Rouhani B; Hussein MI
    Rep Prog Phys; 2021 Sep; 84(8):. PubMed ID: 33434894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Acoustic Metamaterials for Sound Absorption: From Uniform to Gradient Structures.
    Zhang X; Qu Z; Wang H
    iScience; 2020 May; 23(5):101110. PubMed ID: 32408175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound trapping and waveguiding in locally resonant viscoelastic phononic crystals.
    Yip KLS; John S
    Sci Rep; 2023 Sep; 13(1):15313. PubMed ID: 37714916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous negative reflection and refraction and reverse-incident right-angle collimation of sound in a solid-fluid phononic crystal.
    Jin Y; Walker E; Choi TY; Neogi A; Krokhin A
    J Acoust Soc Am; 2022 Apr; 151(4):2723. PubMed ID: 35461509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metamaterial shields for inner protection and outer tuning through a relaxed micromorphic approach.
    Rizzi G; Neff P; Madeo A
    Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2231):20210400. PubMed ID: 35858081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.