These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36209864)

  • 61. Sorption of Cu and Zn in low organic matter-soils as influenced by soil properties and by the degree of soil weathering.
    Antoniadis V; Golia EE
    Chemosphere; 2015 Nov; 138():364-9. PubMed ID: 26133698
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modeling the kinetics of the competitive adsorption and desorption of glyphosate and phosphate on goethite and gibbsite and in soils.
    Gimsing AL; Borggaard OK; Sestoft P
    Environ Sci Technol; 2004 Mar; 38(6):1718-22. PubMed ID: 15074680
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils.
    Appel C; Ma L
    J Environ Qual; 2002; 31(2):581-9. PubMed ID: 11931450
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate.
    Sharma P; Kappler A
    J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sorption of paraquat on clay components in Taiwan's oxisol.
    Hseu ZY; Jien SH; Cheng SF
    J Environ Sci Health B; 2003 Jul; 38(4):441-9. PubMed ID: 12856926
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption.
    Smith E; Naidu R; Alston AM
    J Environ Qual; 2002; 31(2):557-63. PubMed ID: 11931447
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions.
    Luo X; Yu L; Wang C; Yin X; Mosa A; Lv J; Sun H
    Chemosphere; 2017 Feb; 169():609-617. PubMed ID: 27912185
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y; Weng L
    Environ Sci Technol; 2013 Jul; 47(13):7269-76. PubMed ID: 23751067
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effectiveness of Ferric, Ferrous, and Aluminum (Hydr)Oxide Coprecipitation to Treat Water Contaminated with Arsenate.
    Vasques ICF; de Mello JWV; Veloso RW; Ferreira VP; Abrahão WAP
    J Environ Qual; 2018 Nov; 47(6):1339-1346. PubMed ID: 30512073
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hematite enhances the immobilization of copper, cadmium and phosphorus in soil amended with hydroxyapatite under flooded conditions.
    Cui H; Zhang X; Wu Q; Zhang S; Xu L; Zhou J; Zheng X; Zhou J
    Sci Total Environ; 2020 Mar; 708():134590. PubMed ID: 31791791
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in vineyard-devoted soils.
    Pateiro-Moure M; Pérez-Novo C; Arias-Estévez M; Rial-Otero R; Simal-Gándara J
    J Colloid Interface Sci; 2009 May; 333(2):431-8. PubMed ID: 19268966
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.
    Pang L; Lafogler M; Knorr B; McGill E; Saunders D; Baumann T; Abraham P; Close M
    Sci Total Environ; 2016 Apr; 550():60-68. PubMed ID: 26803685
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Facilitated transport of ferrihydrite with phosphate under saturated flow conditions.
    Shah T; Zhao K; Chen A; Muhmood A; Shah SAA; Irshad MK; Arai Y; Shang J
    J Contam Hydrol; 2024 Jul; 265():104384. PubMed ID: 38880032
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Adsorption of trimethyl phosphate on maghemite, hematite, and goethite nanoparticles.
    Mäkie P; Westin G; Persson P; Österlund L
    J Phys Chem A; 2011 Aug; 115(32):8948-59. PubMed ID: 21711003
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling.
    Weng L; Vega FA; Van Riemsdijk WH
    Environ Sci Technol; 2011 Oct; 45(19):8420-8. PubMed ID: 21861529
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characteristics of phosphorus adsorption and desorption in erosive weathered granite area and effects of soil properties.
    Sun T; Deng L; Fei K; Zhang L; Fan X
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28780-28793. PubMed ID: 32356056
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Actinide geochemistry: from the molecular level to the real system.
    Geckeis H; Rabung T
    J Contam Hydrol; 2008 Dec; 102(3-4):187-95. PubMed ID: 19008017
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation.
    Sheng G; Huang C; Chen G; Sheng J; Ren X; Hu B; Ma J; Wang X; Huang Y; Alsaedi A; Hayat T
    Environ Pollut; 2018 Feb; 233():125-131. PubMed ID: 29059627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.