These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 3621028)
1. A novel concentric double-barrelled calcium-selective microelectrode for small cells. Yamaguchi H Can J Physiol Pharmacol; 1987 May; 65(5):1006-8. PubMed ID: 3621028 [TBL] [Abstract][Full Text] [Related]
2. Recording of intracellular Ca2+ from smooth muscle cells by sub-micron tip, double-barrelled CA2+-selective microelectrodes. Yamaguchi H Cell Calcium; 1986 Aug; 7(4):203-19. PubMed ID: 3094959 [TBL] [Abstract][Full Text] [Related]
3. A near-zero membrane potential in transporting corneal endothelial cells of rabbit. Hodson S; Wigham C J Physiol; 1989 May; 412():365-74. PubMed ID: 2600836 [TBL] [Abstract][Full Text] [Related]
4. Neutral carrier Na+- and Ca2+-selective microelectrodes for intracellular application. Dagostino M; Lee CO Biophys J; 1982 Dec; 40(3):199-207. PubMed ID: 7183334 [TBL] [Abstract][Full Text] [Related]
5. Intracellular neutral carrier-based Ca2+ microelectrode with subnanomolar detection limit. Ammann D; Bührer T; Schefer U; Müller M; Simon W Pflugers Arch; 1987 Jul; 409(3):223-8. PubMed ID: 3627942 [TBL] [Abstract][Full Text] [Related]
6. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P. Mayer EA; Loo DD; Snape WJ; Sachs G J Physiol; 1990 Jan; 420():47-71. PubMed ID: 1691293 [TBL] [Abstract][Full Text] [Related]
7. Properties of electrolyte-filled glass microelectrodes: an experimental study. Fåhraeus C; Borglid K; Grampp W J Neurosci Methods; 1997 Dec; 78(1-2):15-28. PubMed ID: 9496998 [TBL] [Abstract][Full Text] [Related]
8. Ability of the Ca2+-selective microelectrodes to measure fast and local Ca2+ transients in nerve cells. Levy S; Tillotson D Can J Physiol Pharmacol; 1987 May; 65(5):904-14. PubMed ID: 2441832 [TBL] [Abstract][Full Text] [Related]
9. [Ion-selective microelectrodes: principle and application of in vivo measurements of ionic concentrations in cochlear endolymph]. Li W; Zhao L; Bao S Zhonghua Yi Xue Za Zhi; 1996 Feb; 76(2):135-7. PubMed ID: 8758448 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and use of high-speed, concentric h+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording. Fedirko N; Svichar N; Chesler M J Neurophysiol; 2006 Aug; 96(2):919-24. PubMed ID: 16672303 [TBL] [Abstract][Full Text] [Related]
11. Properties of electrolyte-filled glass microelectrodes: a model analysis. Fåhraeus C; Grampp W J Neurosci Methods; 1997 Dec; 78(1-2):29-45. PubMed ID: 9496999 [TBL] [Abstract][Full Text] [Related]
12. The use of quartz patch pipettes for low noise single channel recording. Levis RA; Rae JL Biophys J; 1993 Oct; 65(4):1666-77. PubMed ID: 7506069 [TBL] [Abstract][Full Text] [Related]
13. Chloride currents activated by caffeine in rat intestinal smooth muscle cells. Ohta T; Ito S; Nakazato Y J Physiol; 1993 Jun; 465():149-62. PubMed ID: 8229831 [TBL] [Abstract][Full Text] [Related]
14. Double-barrell ion-sensitive microelectrodes with extra thin tip diameters for intracellular measurements. Dufau E; Acker H; Sylvester D Med Prog Technol; 1980 Apr; 7(1):35-9. PubMed ID: 7382927 [TBL] [Abstract][Full Text] [Related]
15. An ultracompliant glass microelectrode for intracellular recording. Fedida D; Sethi S; Mulder BJ; ter Keurs HE Am J Physiol; 1990 Jan; 258(1 Pt 1):C164-70. PubMed ID: 2301563 [TBL] [Abstract][Full Text] [Related]