These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 36210289)
1. The cost of not adopting new agricultural food biotechnologies. Paarlberg R; Smyth SJ Trends Biotechnol; 2023 Mar; 41(3):304-306. PubMed ID: 36210289 [TBL] [Abstract][Full Text] [Related]
2. Agrochemical-free genetically modified and genome-edited crops: Towards achieving the United Nations sustainable development goals and a 'greener' green revolution. Husaini AM; Sohail M J Biotechnol; 2024 Jun; 389():68-77. PubMed ID: 38663518 [TBL] [Abstract][Full Text] [Related]
3. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security. Anderson JA; Gipmans M; Hurst S; Layton R; Nehra N; Pickett J; Shah DM; Souza TL; Tripathi L J Agric Food Chem; 2016 Jan; 64(2):383-93. PubMed ID: 26785813 [TBL] [Abstract][Full Text] [Related]
7. A research program for the socioeconomic impacts of gene editing regulation. Whelan AI; Lema MA GM Crops Food; 2017 Jan; 8(1):74-83. PubMed ID: 28080208 [TBL] [Abstract][Full Text] [Related]
8. Regulatory aspects of gene editing in Argentina. Lema MA Transgenic Res; 2019 Aug; 28(Suppl 2):147-150. PubMed ID: 31321697 [TBL] [Abstract][Full Text] [Related]
10. Will the EU stay out of step with science and the rest of the world on plant breeding innovation? Jorasch P Plant Cell Rep; 2020 Jan; 39(1):163-167. PubMed ID: 31754780 [TBL] [Abstract][Full Text] [Related]
11. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia. Pray C; Ledermann S World Rev Nutr Diet; 2016; 115():175-83. PubMed ID: 27197837 [TBL] [Abstract][Full Text] [Related]
13. Interactive database of genome editing applications in crops and future policy making in the European Union. Dima O; Heyvaert Y; Inzé D Trends Plant Sci; 2022 Aug; 27(8):746-748. PubMed ID: 35599136 [TBL] [Abstract][Full Text] [Related]
14. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812 [TBL] [Abstract][Full Text] [Related]
15. Public perception of plant gene technologies worldwide in the light of food security. Ewa WG; Agata T; Milica P; Anna B; Dennis E; Nick V; Godelieve G; Selim C; Naghmeh A; Tomasz T GM Crops Food; 2022 Dec; 13(1):218-241. PubMed ID: 35996854 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas systems: opportunities and challenges for crop breeding. Biswas S; Zhang D; Shi J Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326 [TBL] [Abstract][Full Text] [Related]
17. Outlaws, old laws and no laws: the prospects of gene editing for agriculture in United States. Parrott W Physiol Plant; 2018 Dec; 164(4):406-411. PubMed ID: 29749067 [TBL] [Abstract][Full Text] [Related]
18. CRISPR-Cas9 Application in Canadian Public and Private Plant Breeding. Gleim S; Lubieniechi S; Smyth SJ CRISPR J; 2020 Feb; 3(1):44-51. PubMed ID: 32091256 [TBL] [Abstract][Full Text] [Related]
20. Innovation and the regulation of products of agricultural biotechnology in the United States of America. McCammon SL; Mendelsohn M Transgenic Res; 2019 Aug; 28(Suppl 2):183-186. PubMed ID: 31321703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]