BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36210750)

  • 1. Activating Organic Phosphorescence via Heavy Metal-π Interaction Induced Intersystem Crossing.
    Sun MJ; Anhalt O; Sárosi MB; Stolte M; Würthner F
    Adv Mater; 2022 Dec; 34(51):e2207331. PubMed ID: 36210750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of Long-Lived Room-Temperature Phosphorescence in Organic Aggregates.
    Peng Q; Ma H; Shuai Z
    Acc Chem Res; 2021 Feb; 54(4):940-949. PubMed ID: 33347277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "Flexible" Purely Organic Molecule Exhibiting Strong Spin-Orbital Coupling: Toward Nondoped Room-Temperature Phosphorescence OLEDs.
    Qiu W; Cai X; Chen Z; Wei X; Li M; Gu Q; Peng X; Xie W; Jiao Y; Gan Y; Liu W; Su SJ
    J Phys Chem Lett; 2022 Jun; 13(22):4971-4980. PubMed ID: 35639995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides.
    Garain S; Kuila S; Garain BC; Kataria M; Borah A; Pati SK; George SJ
    Angew Chem Int Ed Engl; 2021 May; 60(22):12323-12327. PubMed ID: 33660368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-Temperature Near-Infrared Phosphorescence from C
    Niyas MA; Garain S; Shoyama K; Würthner F
    Angew Chem Int Ed Engl; 2024 May; ():e202406353. PubMed ID: 38713529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieving High-Temperature Phosphorescence by Organic Cocrystal Engineering.
    Singh M; Shen K; Ye W; Gao Y; Lv A; Liu K; Ma H; Meng Z; Shi H; An Z
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202319694. PubMed ID: 38314961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Free Organic Phosphors toward Fast and Efficient Room-Temperature Phosphorescence.
    Shao W; Kim J
    Acc Chem Res; 2022 Jun; 55(11):1573-1585. PubMed ID: 35613040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic room-temperature phosphorescence from halogen-bonded organic frameworks: hidden electronic effects in rigidified chromophores.
    Zhou J; Stojanović L; Berezin AA; Battisti T; Gill A; Kariuki BM; Bonifazi D; Crespo-Otero R; Wasielewski MR; Wu YL
    Chem Sci; 2020 Nov; 12(2):767-773. PubMed ID: 34163810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous Phase Phosphorescence: Ambient Triplet Harvesting of Purely Organic Phosphors via Supramolecular Scaffolding.
    Kuila S; Rao KV; Garain S; Samanta PK; Das S; Pati SK; Eswaramoorthy M; George SJ
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17115-17119. PubMed ID: 30376209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron-Cluster-Enhanced Ultralong Organic Phosphorescence.
    Tu D; Cai S; Fernandez C; Ma H; Wang X; Wang H; Ma C; Yan H; Lu C; An Z
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9129-9133. PubMed ID: 31021455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides.
    Garain S; Sarkar S; Chandra Garain B; Pati SK; George SJ
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202115773. PubMed ID: 35015335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Helical Arrays for the Stabilization of the Triplet State.
    Nidhankar AD; Goudappagouda ; Mohana Kumari DS; Chaubey SK; Nayak R; Gonnade RG; Kumar GVP; Krishnan R; Babu SS
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):13079-13085. PubMed ID: 32367621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigate the Relationship between Structure and Triplet Potential Energy Surface to Control the Phosphorescence Quantum Yield of Platinum(II) Complex: A Theoretical Investigation.
    Luo Y; Guo Y; Shou X; Chen Z; Xu Z; Tang D
    Inorg Chem; 2022 Jun; 61(24):9162-9172. PubMed ID: 35666779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering molecular photophysics by merging organic and inorganic chromophores.
    Castellano FN
    Acc Chem Res; 2015 Mar; 48(3):828-39. PubMed ID: 25646710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorescence Properties of Boron/Bismuth Hybrid Conjugated Materials.
    Adachi Y; Terao S; Kanematsu Y; Ohshita J
    Chem Asian J; 2024 Apr; 19(7):e202301142. PubMed ID: 38426601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving pure room temperature phosphorescence (RTP) in phenoselenazine-based organic emitters through synergism among heavy atom effect, enhanced n → π* transitions and magnified electron coupling by the A-D-A molecular configuration.
    Zhong D; Liu S; Yue L; Feng Z; Wang H; Yang P; Su B; Yang X; Sun Y; Zhou G
    Chem Sci; 2024 Jun; 15(24):9112-9119. PubMed ID: 38903225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purely Organic Room-Temperature Phosphorescence Endowing Fast Intersystem Crossing from Through-Space Spin-Orbit Coupling.
    Yu J; Ma H; Huang W; Liang Z; Zhou K; Lv A; Li XG; He Z
    JACS Au; 2021 Oct; 1(10):1694-1699. PubMed ID: 34723272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrabright Au@Cu
    Song Y; Li Y; Zhou M; Liu X; Li H; Wang H; Shen Y; Zhu M; Jin R
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activating Molecular Room-Temperature Phosphorescence by Manipulating Excited-State Energy Levels in Poly(vinyl alcohol) Matrix.
    Liang Z; Wei M; Zhang S; Huang W; Shi N; Lv A; Ma H; He Z
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35534-35542. PubMed ID: 37449496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-lived room temperature deep-red/near-IR emissive intraligand triplet excited state (3IL) of naphthalimide in cyclometalated platinum(II) complexes and its application in upconversion.
    Wu W; Guo H; Wu W; Ji S; Zhao J
    Inorg Chem; 2011 Nov; 50(22):11446-60. PubMed ID: 22029396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.