These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36211065)
21. Quantum dot photoluminescence quenching by Cr(III) complexes. Photosensitized reactions and evidence for a FRET mechanism. Burks PT; Ostrowski AD; Mikhailovsky AA; Chan EM; Wagenknecht PS; Ford PC J Am Chem Soc; 2012 Aug; 134(32):13266-75. PubMed ID: 22808899 [TBL] [Abstract][Full Text] [Related]
22. Fluorescence quenching of CdS quantum dots by 4-azetidinyl-7-nitrobenz-2-oxa-1,3-diazole: a mechanistic study. Santhosh K; Patra S; Soumya S; Khara DC; Samanta A Chemphyschem; 2011 Oct; 12(15):2735-41. PubMed ID: 22002891 [TBL] [Abstract][Full Text] [Related]
23. The nature of non-FRET photoluminescence quenching in nanoassemblies from semiconductor quantum dots and dye molecules. Stupak AP; Blaudeck T; Zenkevich EI; Krause S; von Borczyskowski C Phys Chem Chem Phys; 2018 Jul; 20(27):18579-18600. PubMed ID: 29953143 [TBL] [Abstract][Full Text] [Related]
24. Reversible Charge-Carrier Trapping Slows Förster Energy Transfer in CdSe/CdS Quantum-Dot Solids. Montanarella F; Biondi M; Hinterding SOM; Vanmaekelbergh D; Rabouw FT Nano Lett; 2018 Sep; 18(9):5867-5874. PubMed ID: 30095918 [TBL] [Abstract][Full Text] [Related]
25. Formation principles and ligand dynamics of nanoassemblies of CdSe quantum dots and functionalised dye molecules. Blaudeck T; Zenkevich EI; Abdel-Mottaleb M; Szwaykowska K; Kowerko D; Cichos F; von Borczyskowski C Chemphyschem; 2012 Mar; 13(4):959-72. PubMed ID: 22213596 [TBL] [Abstract][Full Text] [Related]
26. Fӧrster resonance energy transfer (FRET) between CdSe quantum dots and ABA phosphorus(V) corroles. Kubba R; Kumar Singh M; Jyoti ; Yadav O; Kumar A Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122345. PubMed ID: 36657286 [TBL] [Abstract][Full Text] [Related]
27. Use of MPA-capped CdS quantum dots for sensitive detection and quantification of Co Bel Haj Mohamed N; Ben Brahim N; Mrad R; Haouari M; Ben Chaâbane R; Negrerie M Anal Chim Acta; 2018 Oct; 1028():50-58. PubMed ID: 29884353 [TBL] [Abstract][Full Text] [Related]
28. Temperature-dependent Förster resonance energy transfer from upconversion nanoparticles to quantum dots. Zhang W; Li J; Lei H; Li B Opt Express; 2020 Apr; 28(8):12450-12459. PubMed ID: 32403742 [TBL] [Abstract][Full Text] [Related]
29. A brief overview of some physical studies on the relaxation dynamics and Förster resonance energy transfer of semiconductor quantum dots. Sadhu S; Patra A Chemphyschem; 2013 Aug; 14(12):2641-53. PubMed ID: 23804322 [TBL] [Abstract][Full Text] [Related]
30. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes. Kotresh MG; Inamdar LS; Shivkumar MA; Adarsh KS; Jagatap BN; Mulimani BG; Advirao GM; Inamdar SR Luminescence; 2017 Jun; 32(4):631-639. PubMed ID: 27808463 [TBL] [Abstract][Full Text] [Related]
31. Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing. Pillai SS; Yukawa H; Onoshima D; Biju V; Baba Y Anal Sci; 2017; 33(2):137-142. PubMed ID: 28190830 [TBL] [Abstract][Full Text] [Related]
32. Thermal stability of photoluminescence in Cu-doped Zn-In-S quantum dots for light-emitting diodes. Yuan X; Ma R; Hua J; Liu Y; Li J; Zhang W; Zhao J; Li H Phys Chem Chem Phys; 2016 Apr; 18(16):10976-82. PubMed ID: 27043791 [TBL] [Abstract][Full Text] [Related]
33. Impact of FRET between Molecular Aggregates and Quantum Dots. Maity P; Gayathri T; Singh SP; Ghosh HN Chem Asian J; 2019 Feb; 14(4):597-605. PubMed ID: 30600921 [TBL] [Abstract][Full Text] [Related]
34. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study. Malik P; Thareja R; Singh J; Kakkar R J Mol Graph Model; 2022 Mar; 111():108099. PubMed ID: 34871980 [TBL] [Abstract][Full Text] [Related]
35. Steady State and Time Resolved Spectroscopic Study of CdSe and CdSe/ZnS QDs:FRET Approach. Kotresh MG; Adarsh KS; Shivkumar MA; Inamdar SR J Fluoresc; 2016 Jul; 26(4):1249-59. PubMed ID: 27155863 [TBL] [Abstract][Full Text] [Related]
36. Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes. Scott AM; Algar WR; Stewart MH; Trammell SA; Blanco-Canosa JB; Dawson PE; Deschamps JR; Goswami R; Oh E; Huston AL; Medintz IL J Phys Chem C Nanomater Interfaces; 2014 May; 118(17):9239-9250. PubMed ID: 24817922 [TBL] [Abstract][Full Text] [Related]
37. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737 [TBL] [Abstract][Full Text] [Related]
38. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System. Ramírez-Herrera DE; Rodríguez-Velázquez E; Alatorre-Meda M; Paraguay-Delgado F; Tirado-Guízar A; Taboada P; Pina-Luis G Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29641435 [TBL] [Abstract][Full Text] [Related]
39. The effect of Cu(I)-doping on the photoinduced electron transfer from aqueous CdS quantum dots. Rana G; Das S; Singha PK; Ali F; Maji R; Datta A J Chem Phys; 2024 Jul; 161(2):. PubMed ID: 38990118 [TBL] [Abstract][Full Text] [Related]