These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36211068)

  • 61. Annealing temperature effect on cobalt ferrite nanoparticles for photocatalytic degradation.
    Swathi S; Yuvakkumar R; Kumar PS; Ravi G; Velauthapillai D
    Chemosphere; 2021 Oct; 281():130903. PubMed ID: 34044303
    [TBL] [Abstract][Full Text] [Related]  

  • 62. N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue.
    Sun L; Shao Q; Zhang Y; Jiang H; Ge S; Lou S; Lin J; Zhang J; Wu S; Dong M; Guo Z
    J Colloid Interface Sci; 2020 Apr; 565():142-155. PubMed ID: 31951986
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Synthesis of belt-like bismuth-rich bismuth oxybromide hierarchical nanostructures with high photocatalytic activities.
    Mi Y; Li H; Zhang Y; Hou W
    J Colloid Interface Sci; 2019 Jan; 534():301-311. PubMed ID: 30241060
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Visible-light-assisted photocatalytic activity of bismuth-TiO
    Ali I; Kim JO
    Chemosphere; 2018 Sep; 207():285-292. PubMed ID: 29803877
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Low temperature energy- efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: A review.
    S D; Tayade RJ
    Chemosphere; 2022 Oct; 304():135300. PubMed ID: 35691396
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthesis, characterization, and visible-light-induced photocatalytic activity of powdered semiconductor oxides of bismuth and zinc toward degradation of Alizarin Red S.
    Kaur G; Sharma S; Kaur K; Bansal P
    Water Environ Res; 2020 Sep; 92(9):1376-1387. PubMed ID: 32221996
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Gadolinium (Gd
    Irfan S; Rizwan S; Shen Y; Li L; Asfandiyar ; Butt S; Nan CW
    Sci Rep; 2017 Feb; 7():42493. PubMed ID: 28195198
    [TBL] [Abstract][Full Text] [Related]  

  • 68. γ-Bi
    Weber M; Rodriguez RD; Zahn DRT; Mehring M
    Inorg Chem; 2018 Jul; 57(14):8540-8549. PubMed ID: 29949355
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Microstructure, Electric, Optical and Photovoltaic Properties of BiFeO
    Wang J; Luo L; Han C; Yun R; Tang X; Zhu Y; Nie Z; Zhao W; Feng Z
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31058843
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Strategies based review on near-infrared light-driven bismuth nanocomposites for environmental pollutants degradation.
    Sudhaik A; Parwaz Khan AA; Raizada P; Nguyen VH; Van Le Q; Asiri AM; Singh P
    Chemosphere; 2022 Mar; 291(Pt 2):132781. PubMed ID: 34748802
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gd
    Subhashini N; Revathi S; Ubaidullah M; Al-Enizi AM; Muthulakshmi S; Thiripurasundari D; Shaikh SF; Nafady A; Moydeen Abdulhameed M; Alanzi NB; Alkhalifah RI; Dash CS; Sundararajan M; Sukumar M
    Dalton Trans; 2023 Feb; 52(9):2735-2748. PubMed ID: 36749193
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced UV-visible response of bismuth subcarbonate nanowires for degradation of xanthate and photocatalytic reaction mechanism.
    Cui K; He Y; Jin S
    Chemosphere; 2016 Apr; 149():245-53. PubMed ID: 26866962
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of Cr Doping on the Structure, Electronic Structure, and Electrochemical Properties of BiFeO
    Kumar S; Ahmed F; Ahmad N; Shaalan NM; Kumar R; Alshoaibi A; Arshi N; Dalela S; Albossed M; Chae KH; Alvi PA; Kumari K
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744177
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Investigation on enhanced photocatalytic degradation of bisphenol A with bismuth oxyiodide catalyst using response surface methodology.
    Zhang D; Wang F; Cao S; Duan X
    RSC Adv; 2018 Feb; 8(11):5967-5975. PubMed ID: 35539611
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Removal of persistent acetophenone from industrial waste-water via bismuth ferrite nanostructures.
    Irfan S; Khan SB; Lam SS; Ong HC; Aizaz Ud Din M; Dong F; Chen D
    Chemosphere; 2022 Sep; 302():134750. PubMed ID: 35504468
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tuneable Phase, Morphology, and Performance of Bismuth Oxyhalide Photocatalysts
    Marks M; Jeppesen HS; Lock N
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35575596
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of Graphene Oxide Nano-Sheets on Structural, Morphological and Photocatalytic Activity of BiFeO
    Irfan S; Liang GX; Li F; Chen YX; Rizwan S; Jin J; Zhuanghao Z; Ping F
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31546773
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Controllable mullite bismuth ferrite micro/nanostructures with multifarious catalytic activities for switchable/hybrid catalytic degradation processes.
    Hu ZT; Oh WD; Liu Y; Yang EH; Lim TT
    J Colloid Interface Sci; 2018 Jan; 509():502-514. PubMed ID: 28923748
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bismuth vanadate/MXene (BiVO
    Sajid MM; Khan SB; Javed Y; Amin N; Zhang Z; Shad NA; Zhai H
    Environ Sci Pollut Res Int; 2021 Jul; 28(27):35911-35923. PubMed ID: 33683584
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering.
    Ratova M; Kelly PJ; West GT; Xia X; Gao Y
    Materials (Basel); 2016 Jan; 9(2):. PubMed ID: 28787867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.