These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36211084)

  • 1. Influence of Proppant Size on the Proppant Embedment Depth.
    Ding X; Wang T; Dong M; Chen N
    ACS Omega; 2022 Oct; 7(39):35044-35054. PubMed ID: 36211084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Modeling of Proppant Embedment in Viscoelastic Formations with the Fractional Maxwell Model.
    Ding X; Zhang F; Chen N; Zhang Y
    ACS Omega; 2021 Aug; 6(31):20398-20407. PubMed ID: 34395988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Experimental Study of Fracture Conductivity of Carbonate Rocks under Different Stimulation Types.
    Xiao H; Xia X; Wang C; Tan X; Zhang H
    ACS Omega; 2023 Dec; 8(51):49175-49190. PubMed ID: 38162798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of Proppant Flowback on Fracture Conductivity in Different Fracturing Fluids and Flowback Conditions.
    Guo S; Wang B; Li Y; Hao H; Zhang M; Liang T
    ACS Omega; 2022 Mar; 7(8):6682-6690. PubMed ID: 35252663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the Suitability of Coke Material for Proppants in the Hydraulic Fracturing of Coals.
    Suponik T; Labus K; Morga R
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimicry Surface-Coated Proppant with Self-Suspending and Targeted Adsorption Ability.
    Lan W; Niu Y; Sheng M; Lu Z; Yuan Y; Zhang Y; Zhou Y; Xu Q
    ACS Omega; 2020 Oct; 5(40):25824-25831. PubMed ID: 33073107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fracturing-Fluid Flowback Simulation with Consideration of Proppant Transport in Hydraulically Fractured Shale Wells.
    Wang F; Chen Q; Lyu X; Zhang S
    ACS Omega; 2020 Apr; 5(16):9491-9502. PubMed ID: 32363301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the Economic Impact of Hydraulic Fracturing Proppant Selection in Light of Occupational Exposure Risk and Functional Requirements.
    Agrawal S; Gernand JM
    Risk Anal; 2020 Feb; 40(2):319-335. PubMed ID: 31858619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Simulation of Proppant Transport in Major and Branching Fractures Based on CFD-DEM.
    Zuo L; Li X; Han Z; You Q; Liu X
    ACS Omega; 2024 Mar; 9(11):13163-13171. PubMed ID: 38524476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proppant Settlement and Long-Term Conductivity Calculation in Complex Fractures.
    Wang X; Zhang X; Zhang M; Zhang Q; Dong P; Ding H; Liu X
    ACS Omega; 2024 Mar; 9(11):12789-12800. PubMed ID: 38524481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation on fracturing effects in hydraulic sand fracturing with acoustic emission and 3d laser scanning.
    Zhang S; Wang C; Zhu G; Gao G; Zhou H
    Sci Rep; 2023 Jul; 13(1):11539. PubMed ID: 37460604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multiwalled Carbon Nanotube-Based Polyurethane Nanocomposite-Coated Sand/Proppant for Improved Mechanical Strength and Flowback Control in Hydraulic Fracturing Applications.
    Alzanam AAA; Ishtiaq U; Muhsan AS; Mohamed NM
    ACS Omega; 2021 Aug; 6(32):20768-20778. PubMed ID: 34423185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Investigation of Hydraulic Fracturing Fluid Based on Pseudo Gemini Surfactant with Polysaccharide Addition.
    Silin M; Magadova L; Poteshkina K; Krisanova P; Filatov A; Kryukov D
    Gels; 2023 Dec; 10(1):. PubMed ID: 38247753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of numerical schemes for capturing shock waves in modeling proppant transport in fractures.
    Roostaei M; Nouri A; Fattahpour V; Chan D
    Pet Sci; 2017; 14(4):731-745. PubMed ID: 32010200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation and Application of High-Efficiency Network Fracturing Technology for Deep Shale Gas in the Southern Sichuan Basin.
    Zhao Z; Zheng Y; Zeng B; Song Y
    ACS Omega; 2022 Apr; 7(16):14276-14282. PubMed ID: 35573210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study on the Backflow Mechanism of Proppants in Induced Fractures and Fiber Sand Control Under the Condition of Large-Scale and Fully Measurable Flow Field.
    Chen Y; Sang Y; Guo J; Yang J; Chen W; Tang B; Feng F; Gou X; Zhang Y
    ACS Omega; 2023 Nov; 8(45):42467-42478. PubMed ID: 38024756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning-Based Propped Fracture Conductivity Correlations of Several Shale Formations.
    Desouky M; Tariq Z; Aljawad MS; Alhoori H; Mahmoud M; Abdulraheem A
    ACS Omega; 2021 Jul; 6(29):18782-18792. PubMed ID: 34337218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles Patterned Ceramsites Showing Super-Hydrophobicity and Low Crushing Rate: The Promising Proppant for Gas and Oil Well Fracturing.
    Ren X; Hu Q; Liu X; Shen Y; Liu C; Yang L; Yang H
    J Nanosci Nanotechnol; 2019 Feb; 19(2):905-911. PubMed ID: 30360170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Prediction of the Proppant Distribution in a Hydraulically Fractured Stage.
    Alajmei S
    ACS Omega; 2023 Oct; 8(40):37080-37089. PubMed ID: 37841146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.