These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36211444)

  • 1. Altered distribution and function of NK-cell subsets lead to impaired tumor surveillance in JAK2V617F myeloproliferative neoplasms.
    Fernandes de Oliveira Costa A; Olops Marani L; Mantello Bianco T; Queiroz Arantes A; Aparecida Lopes I; Antonio Pereira-Martins D; Carvalho Palma L; Santos Scheucher P; Lilian Dos Santos Schiavinato J; Sarri Binelli L; Araújo Silva C; Kobayashi SS; Agostinho Machado-Neto J; Magalhães Rego E; Samuel Welner R; Lobo de Figueiredo-Pontes L
    Front Immunol; 2022; 13():768592. PubMed ID: 36211444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
    Dunbar A; Nazir A; Levine R
    Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells.
    Mansier O; Kilani B; Guitart AV; Guy A; Gourdou-Latyszenok V; Marty C; Parrens M; Plo I; Vainchenker W; James C
    Blood; 2019 Dec; 134(26):2383-2387. PubMed ID: 31697834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress of study on JAK2V617F mutation in myeloproliferative neoplasm].
    Chen YX; Li Y; Zhang LY; Liu B
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Oct; 19(5):1329-33. PubMed ID: 22040998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of multiple anti-apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms.
    Takei H; Coelho-Silva JL; Tavares Leal C; Queiroz Arantes Rocha A; Mantello Bianco T; Welner RS; Mishima Y; Kobayashi IS; Mullally A; Lima K; Machado-Neto JA; Kobayashi SS; Lobo de Figueiredo-Pontes L
    Cancer Sci; 2022 Feb; 113(2):597-608. PubMed ID: 34808021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells.
    Mullally A; Lane SW; Ball B; Megerdichian C; Okabe R; Al-Shahrour F; Paktinat M; Haydu JE; Housman E; Lord AM; Wernig G; Kharas MG; Mercher T; Kutok JL; Gilliland DG; Ebert BL
    Cancer Cell; 2010 Jun; 17(6):584-96. PubMed ID: 20541703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of phenotypic heterogeneity in JAK2V617F-positive myeloproliferative neoplasms reveals a potential target for therapy.
    Gu W; Tong J; Fu R; Sun T; Ju M; Zhao Y; Wang D; Gao J; Liu J; Gao Y; Li H; Wang W; Chi Y; Yang R; Chen L; Shi L; Zhang L
    Br J Haematol; 2023 May; 201(4):690-703. PubMed ID: 36708268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAK2V617F Mutant Megakaryocytes Contribute to Hematopoietic Aging in a Murine Model of Myeloproliferative Neoplasm.
    Lee S; Wong H; Castiglione M; Murphy M; Kaushansky K; Zhan H
    Stem Cells; 2022 Apr; 40(4):359-370. PubMed ID: 35260895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of Stat3 enhances myeloid cell expansion and increases the severity of myeloproliferative neoplasms in Jak2V617F knock-in mice.
    Yan D; Jobe F; Hutchison RE; Mohi G
    Leukemia; 2015 Oct; 29(10):2050-61. PubMed ID: 26044284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell autonomous expression of CXCL-10 in JAK2V617F-mutated MPN.
    Schnöder TM; Eberhardt J; Koehler M; Bierhoff HB; Weinert S; Pandey AD; Nimmagadda SC; Wolleschak D; Jöhrens K; Fischer T; Heidel FH
    J Cancer Res Clin Oncol; 2017 May; 143(5):807-820. PubMed ID: 28233092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera.
    Mullally A; Bruedigam C; Poveromo L; Heidel FH; Purdon A; Vu T; Austin R; Heckl D; Breyfogle LJ; Kuhn CP; Kalaitzidis D; Armstrong SA; Williams DA; Hill GR; Ebert BL; Lane SW
    Blood; 2013 May; 121(18):3692-702. PubMed ID: 23487027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential Development of JAK2V617F Mutation and BCR-ABL1 Fusion in Individual Patients With Myeloproliferative Neoplasms.
    Zhao Y; Reddi D; McCracken J; Iranzad N; Rehder C; Neff J; Wang E
    Arch Pathol Lab Med; 2022 Jun; 146(6):710-717. PubMed ID: 34506622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms.
    Baumeister J; Chatain N; Hubrich A; Maié T; Costa IG; Denecke B; Han L; Küstermann C; Sontag S; Seré K; Strathmann K; Zenke M; Schuppert A; Brümmendorf TH; Kranc KR; Koschmieder S; Gezer D
    Leukemia; 2020 Apr; 34(4):1062-1074. PubMed ID: 31728053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical and laboratory significance of defective P2Y(12) pathway function in patients with myeloproliferative neoplasms: a pilot study.
    Chang H; Shih LY; Michelson AD; Dunn P; Frelinger AL; Wang PN; Kuo MC; Lin TL; Wu JH; Tang TC
    Acta Haematol; 2013; 130(3):181-7. PubMed ID: 23751441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and functional impact of Trp53 inactivation in JAK2V617F myeloproliferative neoplasms.
    Gou P; Liu D; Ganesan S; Lauret E; Maslah N; Parietti V; Zhang W; Meignin V; Kiladjian JJ; Cassinat B; Giraudier S
    Blood Cancer J; 2024 Jan; 14(1):1. PubMed ID: 38177095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche).
    Zhan H; Kaushansky K
    Adv Exp Med Biol; 2020; 1273():135-145. PubMed ID: 33119879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of mutational profiles on phenotypic presentation of myeloproliferative neoplasm subtypes in Bosnia: 18 year follow-up.
    Kurtovic-Kozaric A; Islamagic E; Komic H; Bilalovic N; Eminovic I; Burekovic A; Uzunovic A; Kurtovic S
    Bosn J Basic Med Sci; 2020 May; 20(2):236-247. PubMed ID: 31668145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thrombosis in myeloproliferative neoplasms with JAK2V617F mutation.
    Sun T; Zhang L
    Clin Appl Thromb Hemost; 2013; 19(4):374-81. PubMed ID: 22826442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the Potential Mechanisms of JAK2V617F Somatic Mutation Contributing Distinct Phenotypes in Myeloproliferative Neoplasms.
    Gou P; Zhang W; Giraudier S
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35162937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L
    Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.