These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36211453)

  • 41. Centrifugal Displacement of Nuclei in Adherent Cells to Study LINC Complex-Dependent Mechanisms of Homeostatic Nuclear Positioning.
    Zhu R; Gundersen GG
    Methods Mol Biol; 2018; 1840():91-100. PubMed ID: 30141041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus.
    Luxton GW; Starr DA
    Curr Opin Cell Biol; 2014 Jun; 28():69-75. PubMed ID: 24704701
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LINC complexes mediate the positioning of cone photoreceptor nuclei in mouse retina.
    Razafsky D; Blecher N; Markov A; Stewart-Hutchinson PJ; Hodzic D
    PLoS One; 2012; 7(10):e47180. PubMed ID: 23071752
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations in LMNA modulate the lamin A--Nesprin-2 interaction and cause LINC complex alterations.
    Yang L; Munck M; Swaminathan K; Kapinos LE; Noegel AA; Neumann S
    PLoS One; 2013; 8(8):e71850. PubMed ID: 23977161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activity-dependent regulation of prestin expression in mouse outer hair cells.
    Song Y; Xia A; Lee HY; Wang R; Ricci AJ; Oghalai JS
    J Neurophysiol; 2015 Jun; 113(10):3531-42. PubMed ID: 25810486
    [TBL] [Abstract][Full Text] [Related]  

  • 46. LINCing defective nuclear-cytoskeletal coupling and DYT1 dystonia.
    Saunders CA; Luxton GW
    Cell Mol Bioeng; 2016 Jun; 9(2):207-216. PubMed ID: 27499815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin.
    Ketema M; Wilhelmsen K; Kuikman I; Janssen H; Hodzic D; Sonnenberg A
    J Cell Sci; 2007 Oct; 120(Pt 19):3384-94. PubMed ID: 17881500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration.
    Meyerzon M; Fridolfsson HN; Ly N; McNally FJ; Starr DA
    Development; 2009 Aug; 136(16):2725-33. PubMed ID: 19605495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Glance at the Nuclear Envelope Spectrin Repeat Protein 3.
    Liao L; Qu R; Ouang J; Dai J
    Biomed Res Int; 2019; 2019():1651805. PubMed ID: 31828088
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FHODs: Nuclear tethered formins for nuclear mechanotransduction.
    Antoku S; Schwartz TU; Gundersen GG
    Front Cell Dev Biol; 2023; 11():1160219. PubMed ID: 37215084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The frequency limit of outer hair cell motility measured in vivo.
    Vavakou A; Cooper NP; van der Heijden M
    Elife; 2019 Sep; 8():. PubMed ID: 31547906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Implications for Diverse Functions of the LINC Complexes Based on the Structure.
    Hieda M
    Cells; 2017 Jan; 6(1):. PubMed ID: 28134781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells.
    Belyantseva IA; Adler HJ; Curi R; Frolenkov GI; Kachar B
    J Neurosci; 2000 Dec; 20(24):RC116. PubMed ID: 11125015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca
    Jeng JY; Harasztosi C; Carlton AJ; Corns LF; Marchetta P; Johnson SL; Goodyear RJ; Legan KP; Rüttiger L; Richardson GP; Marcotti W
    J Physiol; 2021 Apr; 599(7):2015-2036. PubMed ID: 33559882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells.
    Wilson MH; Holzbaur EL
    J Cell Sci; 2012 Sep; 125(Pt 17):4158-69. PubMed ID: 22623723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identifying components of the hair-cell interactome involved in cochlear amplification.
    Zheng J; Anderson CT; Miller KK; Cheatham M; Dallos P
    BMC Genomics; 2009 Mar; 10():127. PubMed ID: 19320974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SUN/KASH interactions facilitate force transmission across the nuclear envelope.
    Hao H; Starr DA
    Nucleus; 2019 Dec; 10(1):73-80. PubMed ID: 30888237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells.
    Zhao HB; Liu LM; Yu N; Zhu Y; Mei L; Chen J; Liang C
    J Neurophysiol; 2022 Jan; 127(1):313-327. PubMed ID: 34907797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unraveling the nexus of nesprin in dilated cardiomyopathy: From molecular insights to therapeutic prospects.
    Qin Q; Zhou ZY; Liu Y; Zhou F; Cao C; Teng L
    Life Sci; 2024 Oct; 358():123126. PubMed ID: 39396640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1.
    Wiwatpanit T; Lorenzen SM; Cantú JA; Foo CZ; Hogan AK; Márquez F; Clancy JC; Schipma MJ; Cheatham MA; Duggan A; García-Añoveros J
    Nature; 2018 Nov; 563(7733):691-695. PubMed ID: 30305733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.