BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36211567)

  • 1. 4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid inhibits angiogenesis
    Zhou T; Li Y; Zhang H; Pan L; Pang J; Yuan Q; Li G; Jie L; Wang Y; Zhang Y
    Front Cardiovasc Med; 2022; 9():969616. PubMed ID: 36211567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia.
    Han Q; Liu S; Li Z; Hu F; Zhang Q; Zhou M; Chen J; Lei T; Zhang H
    Brain Res; 2014 Jan; 1542():176-85. PubMed ID: 24189520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DCPIB, a specific inhibitor of volume regulated anion channels (VRACs), reduces infarct size in MCAo and the release of glutamate in the ischemic cortical penumbra.
    Zhang Y; Zhang H; Feustel PJ; Kimelberg HK
    Exp Neurol; 2008 Apr; 210(2):514-20. PubMed ID: 18206872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DCPIB, the proposed selective blocker of volume-regulated anion channels, inhibits several glutamate transport pathways in glial cells.
    Bowens NH; Dohare P; Kuo YH; Mongin AA
    Mol Pharmacol; 2013 Jan; 83(1):22-32. PubMed ID: 23012257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of glucose-induced electrical activity in rat pancreatic beta-cells by DCPIB, a selective inhibitor of volume-sensitive anion currents.
    Best L; Yates AP; Decher N; Steinmeyer K; Nilius B
    Eur J Pharmacol; 2004 Apr; 489(1-2):13-9. PubMed ID: 15063150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroprotective effects of volume-regulated anion channel blocker DCPIB on neonatal hypoxic-ischemic injury.
    Alibrahim A; Zhao LY; Bae CY; Barszczyk A; Sun CL; Wang GL; Sun HS
    Acta Pharmacol Sin; 2013 Jan; 34(1):113-8. PubMed ID: 23202801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DCPIB, a specific inhibitor of volume-regulated anion channels (VRACs), inhibits astrocyte proliferation and cell cycle progression via G1/S arrest.
    He D; Luo X; Wei W; Xie M; Wang W; Yu Z
    J Mol Neurosci; 2012 Feb; 46(2):249-57. PubMed ID: 21559876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of gastric H+,K+-ATPase by 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), an inhibitor of volume-regulated anion channel.
    Fujii T; Takahashi Y; Takeshima H; Saitoh C; Shimizu T; Takeguchi N; Sakai H
    Eur J Pharmacol; 2015 Oct; 765():34-41. PubMed ID: 26277321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway.
    Wu QH; Ma Y; Ruan CC; Yang Y; Liu XH; Ge Q; Kong LR; Zhang JW; Yan C; Gao PJ
    Cardiovasc Res; 2017 Jan; 113(1):70-80. PubMed ID: 28069703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LRRC8A homohexameric channels poorly recapitulate VRAC regulation and pharmacology.
    Yamada T; Figueroa EE; Denton JS; Strange K
    Am J Physiol Cell Physiol; 2021 Mar; 320(3):C293-C303. PubMed ID: 33356947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes.
    Minieri L; Pivonkova H; Caprini M; Harantova L; Anderova M; Ferroni S
    Br J Pharmacol; 2013 Mar; 168(5):1240-54. PubMed ID: 23072356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activating CD137 Signaling Promotes Sprouting Angiogenesis via Increased VEGFA Secretion and the VEGFR2/Akt/eNOS Pathway.
    Li B; Zhang Y; Yin R; Zhong W; Chen R; Yan J
    Mediators Inflamm; 2020; 2020():1649453. PubMed ID: 33162828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptotanshinone inhibits VEGF-induced angiogenesis by targeting the VEGFR2 signaling pathway.
    Xu X; Wu L; Zhou X; Zhou N; Zhuang Q; Yang J; Dai J; Wang H; Chen S; Mao W
    Microvasc Res; 2017 May; 111():25-31. PubMed ID: 28040437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel synthetic small molecule YF-452 inhibits tumor growth through antiangiogenesis by suppressing VEGF receptor 2 signaling.
    Liu Y; He Y; Yang F; Cong X; Wang J; Peng S; Gao D; Wang W; Lan L; Ying X; Liu M; Chen Y; Yi Z
    Sci China Life Sci; 2017 Feb; 60(2):202-214. PubMed ID: 28194552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway.
    Zhang Q; Lu S; Li T; Yu L; Zhang Y; Zeng H; Qian X; Bi J; Lin Y
    J Exp Clin Cancer Res; 2019 Apr; 38(1):173. PubMed ID: 31023337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Melanocyte-stimulating hormone inhibits angiogenesis through attenuation of VEGF/VEGFR2 signaling pathway.
    Weng WT; Huang SC; Ma YL; Chan HH; Lin SW; Wu JC; Wu CY; Wen ZH; Wang EM; Wu CL; Tai MH
    Biochim Biophys Acta; 2014 Jun; 1840(6):1850-60. PubMed ID: 24530634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway.
    Lin SW; Huang SC; Kuo HM; Chen CH; Ma YL; Chu TH; Bee YS; Wang EM; Wu CY; Sung PJ; Wen ZH; Wu DC; Sheu JH; Tai MH
    Mar Drugs; 2015 Feb; 13(2):861-78. PubMed ID: 25668036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiangiogenic Potential of Microbial Metabolite Elaiophylin for Targeting Tumor Angiogenesis.
    Lim HN; Jang JP; Han JM; Jang JH; Ahn JS; Jung HJ
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29498688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkaloid extract of Corydalis yanhusuo inhibits angiogenesis via targeting vascular endothelial growth factor receptor signaling.
    Wan L; Zhao Y; Zhang Q; Gao G; Zhang S; Gao Y; Chen X; Qian X
    BMC Complement Altern Med; 2019 Dec; 19(1):359. PubMed ID: 31823762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation.
    Jin F; Hagemann N; Sun L; Wu J; Doeppner TR; Dai Y; Hermann DM
    Angiogenesis; 2018 May; 21(2):381-394. PubMed ID: 29450744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.