BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36211593)

  • 1. Topographic organization of the human caudate functional connectivity and age-related changes with resting-state fMRI.
    O'Rawe JF; Leung HC
    Front Syst Neurosci; 2022; 16():966433. PubMed ID: 36211593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model testing for distinctive functional connectivity gradients with resting-state fMRI data.
    O'Rawe JF; Ide JS; Leung HC
    Neuroimage; 2019 Jan; 185():102-110. PubMed ID: 30315909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic Mapping as a Basic Principle of Functional Organization for Visual and Prefrontal Functional Connectivity.
    O'Rawe JF; Leung HC
    eNeuro; 2020; 7(1):. PubMed ID: 31988218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting state functional connectivity of the basal nucleus of Meynert in humans: in comparison to the ventral striatum and the effects of age.
    Li CS; Ide JS; Zhang S; Hu S; Chao HH; Zaborszky L
    Neuroimage; 2014 Aug; 97():321-32. PubMed ID: 24736176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Striatal topographical organization: Bridging the gap between molecules, connectivity and behavior.
    Basile GA; Bertino S; Bramanti A; Ciurleo R; Anastasi GP; Milardi D; Cacciola A
    Eur J Histochem; 2021 Oct; 65(s1):. PubMed ID: 34643358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional specialization within the human striatum for diverse psychological functions.
    Pauli WM; O'Reilly RC; Yarkoni T; Wager TD
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1907-12. PubMed ID: 26831091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping functional gradients of the striatal circuit using simultaneous microelectric stimulation and ultrahigh-field fMRI in non-human primates.
    Han MJ; Park CU; Kang S; Kim B; Nikolaidis A; Milham MP; Hong SJ; Kim SG; Baeg E
    Neuroimage; 2021 Aug; 236():118077. PubMed ID: 33878384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling the intrinsic functional organization of the human striatum: a parcellation and connectivity study based on resting-state FMRI.
    Jung WH; Jang JH; Park JW; Kim E; Goo EH; Im OS; Kwon JS
    PLoS One; 2014; 9(9):e106768. PubMed ID: 25203441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder.
    Anticevic A; Hu S; Zhang S; Savic A; Billingslea E; Wasylink S; Repovs G; Cole MW; Bednarski S; Krystal JH; Bloch MH; Li CS; Pittenger C
    Biol Psychiatry; 2014 Apr; 75(8):595-605. PubMed ID: 24314349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired cortico-striatal functional connectivity in prodromal Huntington's Disease.
    Unschuld PG; Joel SE; Liu X; Shanahan M; Margolis RL; Biglan KM; Bassett SS; Schretlen DJ; Redgrave GW; van Zijl PC; Pekar JJ; Ross CA
    Neurosci Lett; 2012 Apr; 514(2):204-9. PubMed ID: 22425717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease.
    Dogan I; Eickhoff CR; Fox PT; Laird AR; Schulz JB; Eickhoff SB; Reetz K
    Neuroimage Clin; 2015; 7():640-52. PubMed ID: 25844318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional corticostriatal connection topographies predict goal directed behaviour in humans.
    Marquand AF; Haak KV; Beckmann CF
    Nat Hum Behav; 2017 Aug; 1(8):0146. PubMed ID: 28804783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.
    Müller-Oehring EM; Sullivan EV; Pfefferbaum A; Huang NC; Poston KL; Bronte-Stewart HM; Schulte T
    Brain Imaging Behav; 2015 Sep; 9(3):619-38. PubMed ID: 25280970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dedifferentiation of caudate functional connectivity and striatal dopamine transporter density predict memory change in normal aging.
    Rieckmann A; Johnson KA; Sperling RA; Buckner RL; Hedden T
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):10160-10165. PubMed ID: 30224467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical Granularity Shapes the Organization of Afferent Paths to the Amygdala and Its Striatal Targets in Nonhuman Primate.
    McHale AC; Cho YT; Fudge JL
    J Neurosci; 2022 Feb; 42(8):1436-1453. PubMed ID: 34965977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-compulsive disorder.
    Chen Y; Juhás M; Greenshaw AJ; Hu Q; Meng X; Cui H; Ding Y; Kang L; Zhang Y; Wang Y; Cui G; Li P
    Neurosci Lett; 2016 Jun; 623():57-62. PubMed ID: 27143323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional connectivity of human striatum: a resting state FMRI study.
    Di Martino A; Scheres A; Margulies DS; Kelly AM; Uddin LQ; Shehzad Z; Biswal B; Walters JR; Castellanos FX; Milham MP
    Cereb Cortex; 2008 Dec; 18(12):2735-47. PubMed ID: 18400794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea.
    Song X; Roy B; Kang DW; Aysola RS; Macey PM; Woo MA; Yan-Go FL; Harper RM; Kumar R
    Brain Behav; 2018 Jun; 8(6):e00994. PubMed ID: 29749715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a Functional Hierarchy of Association Networks.
    Choi EY; Drayna GK; Badre D
    J Cogn Neurosci; 2018 May; 30(5):722-736. PubMed ID: 29308987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.