BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36211661)

  • 21. Passenger comfort and ozone pollution exposure in an air-conditioned bus microenvironment.
    Zhu X; Lei L; Han J; Wang P; Liang F; Wang X
    Environ Monit Assess; 2020 Jul; 192(8):496. PubMed ID: 32643033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncovering factors influencing railway passenger experiences through love and breakup declarations.
    Drouet L; Lallemand C; Koenig V; Viti F; Bongard-Blanchy K
    Appl Ergon; 2023 Sep; 111():104030. PubMed ID: 37146319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of thermal comfort in a hot and humid indoor built environment of a kitchen at a university canteen.
    Alam MS; Sharma M; Salve UR
    Work; 2022; 72(1):189-199. PubMed ID: 35431200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overall and thermal comfort under different temperature, noise, and vibration exposures.
    Zhou X; Liu Y; Luo M; Zheng S; Yang R; Zhang X
    Indoor Air; 2022 Jan; 32(1):e12915. PubMed ID: 34337783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BIM and Data-Driven Predictive Analysis of Optimum Thermal Comfort for Indoor Environment.
    Gan VJL; Luo H; Tan Y; Deng M; Kwok HL
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of whole-body vibration on public transportation passenger performance while typing on smartphones.
    Dutra RMA; Duarte MLM; Melo GC; Neves JAB
    Ergonomics; 2022 Sep; 65(9):1202-1214. PubMed ID: 34939893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Children's and Adults' Comfort Experience of Extra Seat Belts When Riding in the Rear Seat of a Passenger Car.
    Osvalder AL; Hansson I; Bohman K
    Traffic Inj Prev; 2015; 16 Suppl 2():S46-51. PubMed ID: 26436242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air quality in passenger cars of the ground railway transit system in Beijing, China.
    Li TT; Bai YH; Liu ZR; Liu JF; Zhang GS; Li JL
    Sci Total Environ; 2006 Aug; 367(1):89-95. PubMed ID: 16516274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Ride Comfort in a Railway Passenger Car Depending on a Change of Suspension Parameters.
    Dižo J; Blatnický M; Gerlici J; Leitner B; Melnik R; Semenov S; Mikhailov E; Kostrzewski M
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model-based approach for the analysis of aircraft seating comfort.
    Vanacore A; Lanzotti A; Percuoco C; Capasso A; Vitolo B
    Work; 2021; 68(s1):S251-S255. PubMed ID: 33337425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of improved climatic conditions for thermal comfort and energy efficiency in electric buses.
    Cigarini F; Schminkel P; Sonnekalb M; Best P; Göhlich D
    Appl Ergon; 2022 Nov; 105():103856. PubMed ID: 35944330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous assessments of pressure comfort on a train -- a field-laboratory comparison.
    Schwanitz S; Wittkowski M; Rolny V; Samel C; Basner M
    Appl Ergon; 2013 Jan; 44(1):11-7. PubMed ID: 22548973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.
    Pala U; Oz HR
    Appl Ergon; 2015 May; 48():164-76. PubMed ID: 25683544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Field study of neutrality cabin temperature for Chinese passenger in economy class of civil aircraft.
    Liping P; Jie Z; Xiaoru W; Jun F; Shuxin L
    J Therm Biol; 2018 Dec; 78():312-319. PubMed ID: 30509653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forecasting the short-term passenger flow on high-speed railway with neural networks.
    Xie MQ; Li XM; Zhou WL; Fu YB
    Comput Intell Neurosci; 2014; 2014():375487. PubMed ID: 25544838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of bus passenger comfort perception based on passenger load factor and in-vehicle time.
    Shen X; Feng S; Li Z; Hu B
    Springerplus; 2016; 5():62. PubMed ID: 26839755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of aircraft cabin noise on passenger comfort.
    Pennig S; Quehl J; Rolny V
    Ergonomics; 2012; 55(10):1252-65. PubMed ID: 22849320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting the Effects of High-Speed Railway Transfers in the Early COVID-19 Cross-Province Transmission in Mainland China.
    Chan CH; Wen TH
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34199158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on motion sickness caused by high curve speed railway vehicles. Evaluation of the swing and its effects on passengers and conductors.
    Ueno M; Ogawa T; Nakagiri S; Arisawa T; Mino Y; Oyama K; Kodera R; Taniguchi T; Kanazawa S; Ohta T
    Sangyo Igaku; 1986 Jul; 28(4):266-74. PubMed ID: 3784102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.