BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 36211704)

  • 1. Development of a deep learning algorithm for myopic maculopathy classification based on OCT images using transfer learning.
    He X; Ren P; Lu L; Tang X; Wang J; Yang Z; Han W
    Front Public Health; 2022; 10():1005700. PubMed ID: 36211704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AI-Model for Identifying Pathologic Myopia Based on Deep Learning Algorithms of Myopic Maculopathy Classification and "Plus" Lesion Detection in Fundus Images.
    Lu L; Ren P; Tang X; Yang M; Yuan M; Yu W; Huang J; Zhou E; Lu L; He Q; Zhu M; Ke G; Han W
    Front Cell Dev Biol; 2021; 9():719262. PubMed ID: 34722502
    [No Abstract]   [Full Text] [Related]  

  • 3. Automatic Screening and Identifying Myopic Maculopathy on Optical Coherence Tomography Images Using Deep Learning.
    Ye X; Wang J; Chen Y; Lv Z; He S; Mao J; Xu J; Shen L
    Transl Vis Sci Technol; 2021 Nov; 10(13):10. PubMed ID: 34751744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography.
    Lo YC; Lin KH; Bair H; Sheu WH; Chang CS; Shen YC; Hung CL
    Sci Rep; 2020 May; 10(1):8424. PubMed ID: 32439844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Approach for Automated Detection of Myopic Maculopathy and Pathologic Myopia in Fundus Images.
    Du R; Xie S; Fang Y; Igarashi-Yokoi T; Moriyama M; Ogata S; Tsunoda T; Kamatani T; Yamamoto S; Cheng CY; Saw SM; Ting D; Wong TY; Ohno-Matsui K
    Ophthalmol Retina; 2021 Dec; 5(12):1235-1244. PubMed ID: 33610832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesion detection with fine-grained image categorization for myopic traction maculopathy (MTM) using optical coherence tomography.
    Huang X; He S; Wang J; Yang S; Wang Y; Ye X
    Med Phys; 2023 Sep; 50(9):5398-5409. PubMed ID: 37490302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of a deep convolutional neural network in the detection of myopic macular diseases using swept-source optical coherence tomography.
    Sogawa T; Tabuchi H; Nagasato D; Masumoto H; Ikuno Y; Ohsugi H; Ishitobi N; Mitamura Y
    PLoS One; 2020; 15(4):e0227240. PubMed ID: 32298265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of diabetic maculopathy based on optical coherence tomography images using a Vision Transformer model.
    Cai L; Wen C; Jiang J; Liang C; Zheng H; Su Y; Chen C
    BMJ Open Ophthalmol; 2023 Dec; 8(1):. PubMed ID: 38135350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DETECTION OF MORPHOLOGIC PATTERNS OF DIABETIC MACULAR EDEMA USING A DEEP LEARNING APPROACH BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES.
    Wu Q; Zhang B; Hu Y; Liu B; Cao D; Yang D; Peng Q; Zhong P; Zeng X; Xiao Y; Li C; Fang Y; Feng S; Huang M; Cai H; Yang X; Yu H
    Retina; 2021 May; 41(5):1110-1117. PubMed ID: 33031250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study.
    Tan TE; Anees A; Chen C; Li S; Xu X; Li Z; Xiao Z; Yang Y; Lei X; Ang M; Chia A; Lee SY; Wong EYM; Yeo IYS; Wong YL; Hoang QV; Wang YX; Bikbov MM; Nangia V; Jonas JB; Chen YP; Wu WC; Ohno-Matsui K; Rim TH; Tham YC; Goh RSM; Lin H; Liu H; Wang N; Yu W; Tan DTH; Schmetterer L; Cheng CY; Chen Y; Wong CW; Cheung GCM; Saw SM; Wong TY; Liu Y; Ting DSW
    Lancet Digit Health; 2021 May; 3(5):e317-e329. PubMed ID: 33890579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra- and interobserver concordance of a new classification system for myopic maculopathy.
    Zhang RR; Yu Y; Hou YF; Wu CF
    BMC Ophthalmol; 2021 Apr; 21(1):187. PubMed ID: 33892678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based System for Disease Screening and Pathologic Region Detection From Optical Coherence Tomography Images.
    Chen X; Xue Y; Wu X; Zhong Y; Rao H; Luo H; Weng Z
    Transl Vis Sci Technol; 2023 Jan; 12(1):29. PubMed ID: 36716039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of features associated with neovascular age-related macular degeneration in ethnically distinct data sets by an optical coherence tomography: trained deep learning algorithm.
    Rim TH; Lee AY; Ting DS; Teo K; Betzler BK; Teo ZL; Yoo TK; Lee G; Kim Y; Lin AC; Kim SE; Tham YC; Kim SS; Cheng CY; Wong TY; Cheung CMG
    Br J Ophthalmol; 2021 Aug; 105(8):1133-1139. PubMed ID: 32907811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence method based on multi-feature fusion for automatic macular edema (ME) classification on spectral-domain optical coherence tomography (SD-OCT) images.
    Gan F; Wu FP; Zhong YL
    Front Neurosci; 2023; 17():1097291. PubMed ID: 36793539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Coherence Tomography Image Classification Using Hybrid Deep Learning and Ant Colony Optimization.
    Khan A; Pin K; Aziz A; Han JW; Nam Y
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep-Learning Algorithm to Predict Short-Term Progression to Geographic Atrophy on Spectral-Domain Optical Coherence Tomography.
    Dow ER; Jeong HK; Katz EA; Toth CA; Wang D; Lee T; Kuo D; Allingham MJ; Hadziahmetovic M; Mettu PS; Schuman S; Carin L; Keane PA; Henao R; Lad EM
    JAMA Ophthalmol; 2023 Nov; 141(11):1052-1061. PubMed ID: 37856139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Clinical Validation of Semi-Supervised Generative Adversarial Networks for Detection of Retinal Disorders in Optical Coherence Tomography Images Using Small Dataset.
    Zheng C; Ye H; Yang J; Fei P; Qiu Y; Xie X; Wang Z; Chen J; Zhao P
    Asia Pac J Ophthalmol (Phila); 2022 May; 11(3):219-226. PubMed ID: 35342179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.