These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36211724)
1. Delivery of curcumin by shellac encapsulation: Stability, bioaccessibility, freeze-dried redispersibility, and solubilization. Yuan Y; Zhang S; Ma M; Xu Y; Wang D Food Chem X; 2022 Oct; 15():100431. PubMed ID: 36211724 [TBL] [Abstract][Full Text] [Related]
2. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility. Yuan Y; Huang J; He S; Ma M; Wang D; Xu Y Food Funct; 2021 Jul; 12(13):5719-5730. PubMed ID: 34115089 [TBL] [Abstract][Full Text] [Related]
3. Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin. Yuan Y; Xiao J; Zhang P; Ma M; Wang D; Xu Y Food Chem; 2021 Dec; 364():130401. PubMed ID: 34174648 [TBL] [Abstract][Full Text] [Related]
4. Enhanced environmental stress resistance and functional properties of the curcumin-shellac nano-delivery system: Anti-flocculation of poly-γ-glutamic acid. Zhuang D; Wang Y; Wang S; Li R; Ahmad HN; Zhu J Int J Biol Macromol; 2024 May; 268(Pt 2):131607. PubMed ID: 38631573 [TBL] [Abstract][Full Text] [Related]
5. pH-driven self-assembly of alcohol-free curcumin-loaded propylene glycol alginate nanoparticles. Yuan Y; Ma M; Zhang S; Wang D; Xu Y Int J Biol Macromol; 2022 Jan; 195():302-308. PubMed ID: 34920055 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and characterization of core-shell gliadin/tremella polysaccharide nanoparticles for curcumin delivery: Encapsulation efficiency, physicochemical stability and bioaccessibility. Zhang X; Wei Z; Wang X; Wang Y; Tang Q; Huang Q; Xue C Curr Res Food Sci; 2022; 5():288-297. PubMed ID: 36561330 [TBL] [Abstract][Full Text] [Related]
7. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility. Guo S; Zhao Y; Luo S; Mu D; Li X; Zhong X; Jiang S; Zheng Z J Sci Food Agric; 2022 Sep; 102(12):5121-5131. PubMed ID: 35275410 [TBL] [Abstract][Full Text] [Related]
9. Efficient encapsulation of curcumin into spent brewer's yeast using a pH-driven method. Fu DW; Fu JJ; Li JJ; Tang Y; Shao ZW; Zhou DY; Song L Food Chem; 2022 Nov; 394():133537. PubMed ID: 35749870 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles. Wang YH; Yuan Y; Yang XQ; Wang JM; Guo J; Lin Y J Food Sci Technol; 2016 Jul; 53(7):2923-2932. PubMed ID: 27765963 [TBL] [Abstract][Full Text] [Related]
11. Shellac Micelles Loaded with Curcumin Using a pH Cycle to Improve Dispersibility, Bioaccessibility, and Potential for Colon Delivery. Wang A; Jain S; Dia V; Lenaghan SC; Zhong Q J Agric Food Chem; 2022 Dec; 70(48):15166-15177. PubMed ID: 36398904 [TBL] [Abstract][Full Text] [Related]
12. Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity. Feng J; Xu H; Zhang L; Wang H; Liu S; Liu Y; Hou W; Li C J Agric Food Chem; 2019 Jan; 67(1):379-390. PubMed ID: 30566342 [TBL] [Abstract][Full Text] [Related]
13. The self-assembled zein hydrolysate-curcumin nanocomplex: improvement on the stability and sustainable release of curcumin. Lei L; Liang XY; Su CR; Nag A; Yang XQ; Yuan Y J Sci Food Agric; 2022 Oct; 102(13):5729-5737. PubMed ID: 35396741 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of curcumin-loaded composite nanoparticles based on high-hydrostatic-pressure-treated zein and pectin: Interaction mechanism, stability, and bioaccessibility. Wang N; Fan H; Wang J; Wang H; Liu T Food Chem; 2024 Jul; 446():138286. PubMed ID: 38428073 [TBL] [Abstract][Full Text] [Related]
15. Precursor template-induced egg white-derived peptides self-assembly for the enhancement of curcumin: Structure, environmental stability, and bioavailability. Li Y; Liu J; Shi X; Zhang H; Zhang L; Xu Z; Zhang T; Yu Y; Du Z Food Res Int; 2023 Oct; 172():113120. PubMed ID: 37689888 [TBL] [Abstract][Full Text] [Related]
16. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Li ZL; Peng SF; Chen X; Zhu YQ; Zou LQ; Liu W; Liu CM Food Res Int; 2018 Jun; 108():246-253. PubMed ID: 29735054 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Sun C; Xu C; Mao L; Wang D; Yang J; Gao Y Food Chem; 2017 Aug; 228():656-667. PubMed ID: 28317777 [TBL] [Abstract][Full Text] [Related]
18. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Dai L; Sun C; Li R; Mao L; Liu F; Gao Y Food Chem; 2017 Dec; 237():1163-1171. PubMed ID: 28763965 [TBL] [Abstract][Full Text] [Related]
19. Construction of curcumin-fortified juices using their self-derived extracellular vesicles as natural delivery systems: grape, tomato, and orange juices. Liu H; Song J; Zhou L; Peng S; McClements DJ; Liu W Food Funct; 2023 Oct; 14(20):9364-9376. PubMed ID: 37789722 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of glycated yeast cell protein via Maillard reaction for delivery of curcumin: improved environmental stability, antioxidant activity, and bioaccessibility. Fu JJ; Fu DW; Zhang GY; Zhang ZH; Xu XB; Song L J Sci Food Agric; 2023 Mar; 103(5):2544-2553. PubMed ID: 36571448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]