These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36211724)
21. Self-assembled composite nanoparticles based on zein as delivery vehicles of curcumin: role of chondroitin sulfate. Liu C; Yuan Y; Ma M; Zhang S; Wang S; Li H; Xu Y; Wang D Food Funct; 2020 Jun; 11(6):5377-5388. PubMed ID: 32469014 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of Polydopamine-Based Curcumin Nanoparticles for Chemical Stability and pH-Responsive Delivery. Pan H; Shen X; Tao W; Chen S; Ye X J Agric Food Chem; 2020 Mar; 68(9):2795-2802. PubMed ID: 32031786 [TBL] [Abstract][Full Text] [Related]
23. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. Ma Y; Chen S; Liao W; Zhang L; Liu J; Gao Y J Agric Food Chem; 2020 Jul; 68(27):7103-7111. PubMed ID: 32559379 [TBL] [Abstract][Full Text] [Related]
24. Sodium caseinate decorating on shellac nanoparticles as a stabilizer for the encapsulation of quercetin. Zhang H; Sun X; Wang J; Dong M; Li L; Bai F; Xu K; Wang L Food Chem; 2022 Nov; 395():133580. PubMed ID: 35777202 [TBL] [Abstract][Full Text] [Related]
25. Structural interplay between curcumin and soy protein to improve the water-solubility and stability of curcumin. Wang Y; Sun R; Xu X; Du M; Zhu B; Wu C Int J Biol Macromol; 2021 Dec; 193(Pt B):1471-1480. PubMed ID: 34742837 [TBL] [Abstract][Full Text] [Related]
26. Study on the Preparation, Characterization, and Stability of Freeze-Dried Curcumin-Loaded Cochleates. Chen L; Yue B; Liu Z; Luo Y; Ni L; Zhou Z; Ge X Foods; 2022 Feb; 11(5):. PubMed ID: 35267344 [TBL] [Abstract][Full Text] [Related]
27. Fabrication and Characterization of Quercetagetin-Loaded Nanoparticles Based on Shellac and Quaternized Chitosan: Improvement of Encapsulation Efficiency and Acid and Storage Stabilities. Zhang H; Wang J; Sun X; Zhang Y; Dong M; Wang X; Li L; Wang L J Agric Food Chem; 2021 Dec; 69(51):15670-15680. PubMed ID: 34923817 [TBL] [Abstract][Full Text] [Related]
28. pH-shifting encapsulation of curcumin in egg white protein isolate for improved dispersity, antioxidant capacity and thermal stability. Wang Y; Zhang L; Wang P; Xu X; Zhou G Food Res Int; 2020 Nov; 137():109366. PubMed ID: 33233068 [TBL] [Abstract][Full Text] [Related]
29. Glycated Soy β-Conglycinin Nanoparticle for Efficient Nanocarrier of Curcumin: Formation Mechanism, Thermal Stability, and Storage Stability. Wang Z; Xu J; Ji F; Liu H; Wang C; Luo S; Zheng Z Foods; 2022 Nov; 11(22):. PubMed ID: 36429295 [TBL] [Abstract][Full Text] [Related]
30. One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Hou L; Zhang L; Yu C; Chen J; Ye X; Zhang F; Linhardt RJ; Chen S; Pan H Foods; 2023 Apr; 12(8):. PubMed ID: 37107418 [TBL] [Abstract][Full Text] [Related]
31. Fabrication, characterization and in vitro cell exposure study of zein-chitosan nanoparticles for co-delivery of curcumin and berberine. Ghobadi-Oghaz N; Asoodeh A; Mohammadi M Int J Biol Macromol; 2022 Apr; 204():576-586. PubMed ID: 35157902 [TBL] [Abstract][Full Text] [Related]
32. Hydrophobin-enhanced stability, dispersions and release of curcumin nanoparticles in water. Niu B; Li M; Jia J; Zhang C; Fan YY; Li W J Biomater Sci Polym Ed; 2020 Oct; 31(14):1793-1805. PubMed ID: 32510282 [TBL] [Abstract][Full Text] [Related]
33. Development of sorghum arabinoxylan-soy protein isolate composite nanoparticles for delivery of curcumin: Effect of polysaccharide content on stability and in vitro digestibility. Yan J; Jia X; Qu Y; Yan W; Li Y; Yin L Int J Biol Macromol; 2024 Mar; 262(Pt 1):129867. PubMed ID: 38309400 [TBL] [Abstract][Full Text] [Related]
34. Surfactin effectively improves bioavailability of curcumin by formation of nano-capsulation. Shan M; Meng F; Tang C; Zhou L; Lu Z; Lu Y Colloids Surf B Biointerfaces; 2022 Jul; 215():112521. PubMed ID: 35490540 [TBL] [Abstract][Full Text] [Related]
35. Determination of the critical pH for unfolding water-soluble cod protein and its effect on encapsulation capacities. Wang Y; Shen J; Zou B; Zhang L; Xu X; Wu C Food Res Int; 2023 Dec; 174(Pt 1):113621. PubMed ID: 37986474 [TBL] [Abstract][Full Text] [Related]
36. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. Zhang Y; Zhou J; Yang C; Wang W; Chu L; Huang F; Liu Q; Deng L; Kong D; Liu J; Liu J Int J Nanomedicine; 2016; 11():1119-30. PubMed ID: 27051287 [TBL] [Abstract][Full Text] [Related]
37. Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery. Li X; He Y; Zhang S; Gu Q; McClements DJ; Chen S; Liu X; Liu F ACS Appl Mater Interfaces; 2023 Apr; 15(14):18166-18181. PubMed ID: 36893425 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of Ion-Crosslinking Aminochitosan Nanoparticles for Encapsulation and Slow Release of Curcumin. Sun X; Yu D; Ying Z; Pan C; Wang N; Huang F; Ling J; Ouyang XK Pharmaceutics; 2019 Nov; 11(11):. PubMed ID: 31703324 [TBL] [Abstract][Full Text] [Related]
39. Core-shell pea protein-carboxymethylated corn fiber gum composite nanoparticles as delivery vehicles for curcumin. Wei Y; Cai Z; Wu M; Guo Y; Wang P; Li R; Ma A; Zhang H Carbohydr Polym; 2020 Jul; 240():116273. PubMed ID: 32475561 [TBL] [Abstract][Full Text] [Related]
40. Storage stability and solubilization ability of HPMC in curcumin amorphous solid dispersions formulated by Eudragit E100. Fan N; Ma P; Wang X; Li C; Zhang X; Zhang K; Li J; He Z Carbohydr Polym; 2018 Nov; 199():492-498. PubMed ID: 30143154 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]