These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 36212315)
41. Legume genomics and transcriptomics: From classic breeding to modern technologies. Afzal M; Alghamdi SS; Migdadi HH; Khan MA; Nurmansyah ; Mirza SB; El-Harty E Saudi J Biol Sci; 2020 Jan; 27(1):543-555. PubMed ID: 31889880 [TBL] [Abstract][Full Text] [Related]
42. Plant pan-genomics: recent advances, new challenges, and roads ahead. Li W; Liu J; Zhang H; Liu Z; Wang Y; Xing L; He Q; Du H J Genet Genomics; 2022 Sep; 49(9):833-846. PubMed ID: 35750315 [TBL] [Abstract][Full Text] [Related]
43. Genome Editing and Designer Crops for the Future. Rana S; Aggarwal PR; Shukla V; Giri U; Verma S; Muthamilarasan M Methods Mol Biol; 2022; 2408():37-69. PubMed ID: 35325415 [TBL] [Abstract][Full Text] [Related]
44. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. Su CL; Chen WC; Lee AY; Chen CY; Chang YC; Chao YT; Shih MC PLoS One; 2013; 8(11):e80462. PubMed ID: 24265826 [TBL] [Abstract][Full Text] [Related]
45. Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications. Farinati S; Draga S; Betto A; Palumbo F; Vannozzi A; Lucchin M; Barcaccia G Front Plant Sci; 2023; 14():1223861. PubMed ID: 37521915 [TBL] [Abstract][Full Text] [Related]
46. The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Aceto S; Gaudio L Curr Genomics; 2011 Aug; 12(5):342-56. PubMed ID: 22294877 [TBL] [Abstract][Full Text] [Related]
47. Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. Xia K; Zhang D; Xu X; Liu G; Yang Y; Chen Z; Wang X; Zhang GQ; Sun HX; Gu Y Plant Sci; 2022 Sep; 322():111368. PubMed ID: 35780949 [TBL] [Abstract][Full Text] [Related]
48. Dissecting the Function of MADS-Box Transcription Factors in Orchid Reproductive Development. Teo ZWN; Zhou W; Shen L Front Plant Sci; 2019; 10():1474. PubMed ID: 31803211 [TBL] [Abstract][Full Text] [Related]
49. Current status and future possibilities of molecular genetics techniques in Brassica napus. Afzal M; Alghamdi SS; Habib Ur Rahman M; Ahmad A; Farooq T; Alam M; Khan IA; Ullah H; Nasim W; Fahad S Biotechnol Lett; 2018 Mar; 40(3):479-492. PubMed ID: 29344848 [TBL] [Abstract][Full Text] [Related]
50. Exploring the switchgrass transcriptome using second-generation sequencing technology. Wang Y; Zeng X; Iyer NJ; Bryant DW; Mockler TC; Mahalingam R PLoS One; 2012; 7(3):e34225. PubMed ID: 22479570 [TBL] [Abstract][Full Text] [Related]
51. Deciphering peanut complex genomes paves a way to understand its origin and domestication. Pan Y; Zhuang Y; Liu T; Chen H; Wang L; Varshney RK; Zhuang W; Wang X Plant Biotechnol J; 2023 Nov; 21(11):2173-2181. PubMed ID: 37523347 [TBL] [Abstract][Full Text] [Related]
52. Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Varshney RK; Penmetsa RV; Dutta S; Kulwal PL; Saxena RK; Datta S; Sharma TR; Rosen B; Carrasquilla-Garcia N; Farmer AD; Dubey A; Saxena KB; Gao J; Fakrudin B; Singh MN; Singh BP; Wanjari KB; Yuan M; Srivastava RK; Kilian A; Upadhyaya HD; Mallikarjuna N; Town CD; Bruening GE; He G; May GD; McCombie R; Jackson SA; Singh NK; Cook DR Mol Breed; 2010 Oct; 26(3):393-408. PubMed ID: 20976284 [TBL] [Abstract][Full Text] [Related]
53. Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. Fiaz S; Ahmad S; Noor MA; Wang X; Younas A; Riaz A; Riaz A; Ali F Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30791357 [TBL] [Abstract][Full Text] [Related]
54. Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera. Li Y; Zhu FL; Zheng XW; Hu ML; Dong C; Diao Y; Wang YW; Xie KQ; Hu ZL BMC Genomics; 2020 Feb; 21(1):146. PubMed ID: 32046648 [TBL] [Abstract][Full Text] [Related]
55. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Brand P; Saleh N; Pan H; Li C; Kapheim KM; RamÃrez SR G3 (Bethesda); 2017 Sep; 7(9):2891-2898. PubMed ID: 28701376 [TBL] [Abstract][Full Text] [Related]
56. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Manivannan A; Cheeran Amal T Mol Biol Rep; 2023 Aug; 50(8):6937-6953. PubMed ID: 37349608 [TBL] [Abstract][Full Text] [Related]
57. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Chen K; Wang Y; Zhang R; Zhang H; Gao C Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493 [TBL] [Abstract][Full Text] [Related]
58. Plastid Genome Degradation in the Endangered, Mycoheterotrophic, North American Orchid Hexalectris warnockii. Barrett CF; Kennedy AH Genome Biol Evol; 2018 Jul; 10(7):1657-1662. PubMed ID: 29850794 [TBL] [Abstract][Full Text] [Related]
59. Orchid pollination by sexual deception: pollinator perspectives. Gaskett AC Biol Rev Camb Philos Soc; 2011 Feb; 86(1):33-75. PubMed ID: 20377574 [TBL] [Abstract][Full Text] [Related]